Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5782, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723172

RESUMO

In laser-driven inertial confinement fusion, driving pressure boosting and smoothing are major challenges. A proposed hybrid-drive (HD) scheme can offer such ideal HD pressure performing stable implosion and nonstagnation ignition. Here we report that in the hemispherical and planar ablator targets installed in the semicylindrical hohlraum scaled down from the spherical hohlraum of the designed ignition target, under indirect-drive (ID) laser energies of ~43-50 kJ, the peak radiation temperature of 200 ± 6 eV is achieved. And using only direct-drive (DD) laser energies of 3.6-4.0 kJ at an intensity of 1.8 × 1015 W/cm2, in the hemispherical and planar targets the boosted HD pressures reach 3.8-4.0 and 3.5-3.6 times the radiation ablation pressure respectively. In all the above experiments, significant HD pressure smoothing and the important phenomenon of how a symmetric strong HD shock suppresses the asymmetric ID shock pre-compressed fuel are demonstrated. The backscattering and hot-electron energy fractions both of which are about one-third of that in the DD scheme are also measured.

2.
Opt Express ; 30(25): 45792-45806, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522976

RESUMO

The quantitative measurement of plasma soft x-ray spectra is an important diagnostic problem in indirect-drive laser inertial confinement fusion (ICF). We designed, built, and tested a compact multichannel soft x-ray spectrometer with both spatial and temporal resolution capabilities for the detection of the spatiotemporal distribution of soft x-ray spectra. The spectrometer occupies a small solid angle, and the close measurement angle used for each channel enables the measurement of the angular distribution of emitting soft x-rays in ICF experiments. The spectrometer comprises pinhole, filter, and multilayer flat mirror arrays, and an x-ray streak camera. Its energy range is 0.1 - 3 keV. The dispersive elements of the spectrometer were calibrated at the Beijing Synchrotron Radiation Facility. The accuracy of the calibration was ≤ 5%, and the combined energy resolution (E/ΔE) of the calibrated dispersive elements of each channel was higher than 10. Finally, the instrument was tested at the Shenguang-III Laser Facility. The measurement results of x-ray radiation flux are agreed well with the experimental results of the M-band flat-response x-ray diode, demonstrating the feasibility of the proposed spectrometer configuration.

3.
Phys Rev Lett ; 128(7): 075001, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244411

RESUMO

A new method for measuring the time-dependent drive flux at the hohlraum center is proposed as a better alternative to conventional wall-based techniques. The drive flux here is obtained by simultaneous measurement of the reemitted flux and shock velocity from a three-layered "cakelike" sample. With these two independent observables, the influence induced by the uncertainty of the material parameters of the sample can be effectively decreased. The influence from the closure of the laser entrance hole, which was the main challenge in conventional wall-based techniques, was avoided through localized reemitted flux measurement, facilitating drive flux measurement throughout the entire time history. These studies pave a new way for probing the time-dependent drive flux, for both cylindrical hohlraums and novel hohlraums with six laser entrance holes.

4.
Phys Rev Lett ; 127(24): 245001, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951808

RESUMO

In inertial confinement approaches to fusion, the asymmetry of target implosion is a major obstacle to achieving high gain in the laboratory. A recently proposed octahedral spherical hohlraum makes it possible to naturally create spherical target irradiation without supplementary symmetry control. Before any decision is made to pursue an ignition-scale laser system based on the octahedral hohlraum, one needs to test the concept with the existing facilities. Here, we report a proof-of-concept experiment for the novel octahedral hohlraum geometry on the cylindrically configured SGIII laser facility without a symmetry control. All polar and equatorial self-emission images of the compressed target show a near round shape of convergence ratio 15 under both square and shaped laser pulses. The observed implosion performances agree well with the ideal spherical implosion simulation. It also shows limitations with using the existing facilities and adds further weight to the need to move to a spherical port geometry for future ignition laser facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...