Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592685

RESUMO

The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g., support, metal surface, and metal-support interface) still presents a big challenge. In particular, many studies have demonstrated that metal-support interfaces could also act as the primary active sites in catalytic reactions, which is well elucidated in oxide-supported metal nanocatalysts but is rarely reported in carbon-supported metal nanocatalysts. Here, we fill the above gap and demonstrate that metal-sulfur interfaces in sulfur-doped carbon-supported metal nanocatalysts are the primary active sites for several catalytic hydrogenation reactions. A series of metal nanocatalysts with similar sizes but different amounts of metal-sulfur interfaces were first constructed and characterized. Taking Ir for quinoline hydrogenation as an example, it was found that their catalytic activities were proportional to the amount of the Ir-S interface. Further experiments and density functional theory (DFT) calculations suggested that the adsorption and activation of quinoline occurred on the Ir atoms at the Ir-S interface. Similar phenomena were found in p-chloronitrobenzene hydrogenation over the Pt-S interface and benzoic acid hydrogenation over the Ru-S interface. All of these findings verify the predominant activity of metal-sulfur interfaces for catalytic hydrogenation reactions and contribute to the comprehensive understanding of metal-support interfaces in supported nanocatalysts.

2.
Materials (Basel) ; 16(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444861

RESUMO

After T5 (forging + aging) and different T6 (forging + solution + aging) heat treatments, the AZ80A Mg alloys exhibited microstructures with different fractions of continuous precipitate (CP) regions and discontinuous precipitate (DP) regions. The effects of the fractions of DP regions and CP regions on the tensile properties and fracture behaviors were investigated using microstructural characterizations and analysis. The results showed that increasing the fraction of DP regions enhanced the yield strength and tensile strength at room temperature. However, at the same high temperature, increasing the fractions of DP regions improved the elongation but deteriorated the tensile strength significantly. The different resultant tensile properties at different temperatures were caused by the different precipitation-strengthening effects in the CP and DP regions. The strengthening contribution of the DP regions was more effective at room temperature but became inferior to the effect brought about by the CP regions at high temperatures. Micro-cracks were usually initiated and propagated in the CP regions at room temperature. At high temperatures, however, micro-voids formed more easily in the DP regions, and the fracture path preferred to locate there.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...