Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37763360

RESUMO

Molecular simulations are currently receiving significant attention for their ability to offer a microscopic perspective that explains macroscopic phenomena. An essential aspect is the accurate characterization of molecular structural parameters and the development of realistic numerical models. This study investigates the surface morphology and elemental distribution of silicon nitride fibers through TEM and EDS, and SEM and EDS analyses. Utilizing a customized molecular dynamics approach, molecular models of amorphous and multi-interface silicon nitride fibers with complex structures were constructed. Tensile simulations were conducted to explore correlations between performance and molecular structural composition. The results demonstrate successful construction of molecular models with amorphous, amorphous-crystalline interface, and mixed crystalline structures. Mechanical property characterization reveal the following findings: (1) The nonuniform and irregular amorphous structure causes stress concentration and crack formation under applied stress. Increased density enhances material strength but leads to higher crack sensitivity. (2) Incorporating a crystalline reinforcement phase without interfacial crosslinking increases free volume and relative tensile strength, improving toughness and reducing crack susceptibility. (3) Crosslinked interfaces effectively enhance load transfer in transitional regions, strengthening the material's tensile strength, while increased density simultaneously reduces crack propagation.

2.
Nanomaterials (Basel) ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803036

RESUMO

This paper fabricates a carbon nanotube (CNT ) film-reinforced mesophase pitch-based carbon (CNTF/MPC) nanocomposite by using a hot-pressing carbonization method. During the carbonization, the stacked aromatic layers tended to rearrange into amorphous carbon, and subsequently generated crystalline carbon in the matrix. The continuous entangled CNT networks were efficiently densified by the carbon matrix though optimized external pressure to obtain the high-performance nanocomposites. The CNTF/MPC@1300 displayed a stable electrical conductivity up to 841 S/cm at RT-150 °C. Its thermal conductivity in the thickness direction was 1.89 W/m∙K, an order of magnitude higher than that of CNT film. Moreover, CNTF/MPC@1300 showed a mass retention of 99.3% at 1000 °C. Its tensile strength was 2.6 times the CNT film and the tensile modulus was two orders of magnitude higher. Though the CNTF/MPC nanocomposites exhibited brittle tensile failure mode, they resisted cyclic bending without damage. The results demonstrate that the CNTF/MPC nanocomposite has potential application in multi-functional temperature resistance aerospace structures.

3.
Exp Ther Med ; 18(1): 105-118, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31258643

RESUMO

The present study attempted to evaluate whether neonatal gender affects the hematopoietic potential of cord blood (CB) transplants and, if so, to determine the underlying molecular mechanisms. CD34+ cells from CB were isolated and divided into male and female groups. CD34+CD38- cell populations were then compared using fluorescence-assisted cell sorting (FACS) and a colony formation assay was performed. Next, a Genechip microarray analysis was used to identify differentially expressed genes (DEGs). Finally, the Genechip results were validated by FACS analysis. It was revealed that the male group had higher amplification efficiency. Gene ontology analysis indicated differences in the biological function of the DEGs between the two groups. Kyoto Encyclopedia of Genes and Genomes analysis suggested that the hematopoietic cell lineage signaling pathway was upregulated in the male group along with high expression levels of genes including interleukin (IL) 6 signal transducer (glycoprotein 130), IL-7 and IL-7 receptor. It was speculated that this may be partially due to numerous upregulated DEGs being involved in chromosomal segregation and hematopoietic cell lineage signaling pathways in CD34+ cells from the male group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA