Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123934, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266603

RESUMO

Excessive use of antithyroid drug methimazole (MMI) in pharmaceutical samples can cause hypothyroidism and symptoms of metabolic decline. Hence, it is urgent to develop rapid, low cost and accurate colorimetric method with peroxidase-like nanozymes for determination of MMI in medical, nutrition and pharmaceutical studies. Herein, Fe single atoms were facilely encapsulated into N, P-codoped carbon nanosheets (Fe SAs/NP-CSs) by a simple pyrolysis strategy, as certified by a series of characterizations. UV-vis absorption spectroscopy was employed to illustrate the high peroxidase-mimicking activity of the resultant Fe SAs/NP-CSs nanozyme through the typical catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. The catalytic mechanism was scrutionously investigated by the fluorescence spectroscopy and electron paramagnetic resonance (EPR) tests. Additionally, the introduced MMI had the ability to reduce the oxidation of TMB (termed oxTMB) as a peroxidase inhibitor, coupled by fading the blue color. By virtue of the above findings, a visual colorimetric sensor was established for dual detection of methimazole (MMI) with a linear scope of 5-50 mM and a LOD of 1.57 mM, coupled by assay of H2O2 at a linear range of 3-50 mM. According to the irreversible oxidation of the drug, its screening with acceptable results was achieved on the sensing platform even in commercial tablets The Fe SAs/NP-CSs nanozyme holds great potential for clinical diagnosis and drug analysis.


Assuntos
Carbono , Colorimetria , Carbono/química , Colorimetria/métodos , Metimazol , Peróxido de Hidrogênio/análise , Peroxidase/metabolismo , Oxirredutases , Peroxidases , Corantes , Preparações Farmacêuticas
2.
Mikrochim Acta ; 190(9): 353, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37581740

RESUMO

Carbohydrate antigen 15-3 (CA15-3) is an important biomarker for early diagnosis of breast cancer. Herein, a label-free electrochemical immunosensor was built based on three-dimensional (3D) urchin-like core-shell Au@PdCu nanocrystals (labeled Au@PdCu NCs) for highly sensitive detection of CA15-3, where K3[Fe(CN)6] behaved as an electroactive probe. The Au@PdCu NCs were synthesized by a simple one-pot wet-chemical approach and the morphology, structures, and electrocatalytic property were investigated by several techniques. The Au@PdCu NCs prepared worked as electrode material to anchor more antibodies and as signal magnification material by virtue of its exceptional catalytic property. The developed biosensor exhibited a wide linear detection range from 0.1 to 300 U mL-1 and a low limit of detection (0.011 U mL-1, S/N = 3) for determination of CA15-3 under the optimal conditions. The established biosensing platform exhibits some insights for detecting other tumor biomarkers in clinical assays and early diagnosis.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Imunoensaio/métodos , Nanopartículas/química , Biomarcadores Tumorais
3.
Mikrochim Acta ; 190(6): 233, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212925

RESUMO

Mulberry-like AuPtAg porous hollow nanorods (PHNR) were facilely synthesized for the first time via a wet chemical method, where Au nanorods (Au NR) behaved as sacrificed template. The anisotropic oriented growth and etching process are involved in this synthesis. Their structural and electronic characteristics were scrutinously examined by TEM, EDS, XPS, and electrochemical techniques. The AuPtAg PHNR provided a large specific surface area and exposed a large number of active sites, showing highly enhanced catalytic activity. On this foundation, a label-free electrochemical immunosensor was developed for myoglobin (Myo) assay based on the AuPtAg PHNR. Further, the built sensor exhibited fast and ultrasensitive responses in a linear range of 0.0001 ~ 1000 ng mL-1 with a low limit of detection (LOD = 0.46 pg mL-1, S/N = 3), and enabled efficient application to human serum samples with acceptable results. Consequently, the developed AuPtAg PHNR-based platform has a broad prospect in practically monitoring Myo and other biomarkers in clinics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Morus , Nanotubos , Humanos , Mioglobina , Técnicas Biossensoriais/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Porosidade , Imunoensaio/métodos , Nanotubos/química , Biomarcadores
4.
Biosens Bioelectron ; 230: 115293, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028001

RESUMO

Fumonisin B1 (FB1), the most prevalent and highest toxicity mycotoxins among fumonisins family, poses threats to human especially children and infants even at a trace level. Therefore, its facile and sensitive detection is of importance. Herein, Z-scheme Cu2MoS4/CdS/In2S3 nanocage-like heterojunctions (labeled Cu2MoS4/CdS/In2S3) were synthesized, whose photoelectrochemical (PEC) property and electron transfer mechanism were strictly investigated. The Cu2MoS4/CdS/In2S3 behaved as photoactive substrate for building a PEC sensing platform for detection of FB1, integrated with PtPd alloy modified hollow CoSnO3 nanoboxes (labeled PtPd-CoSnO3) nanozyme. By virtue of the stronger affinity between the target FB1 and its aptamer (FB1-Apt), the photocurrent was recovered by releasing the CoSnO3-PtPd3 modified FB1-Apt (FB1-Apt/PtPd-CoSnO3) from the photoanode, which can terminate the catalytic precipitation reaction for its peroxidase-like property. The resultant PEC aptasensor exhibited a wider dynamic linear range from 1 × 10-4 to 1 × 102 ng mL-1 with a lower limit of detection (0.0723 pg mL-1). Thus, this research provides a feasible PEC sensing platform for routine analysis of other mycotoxins in practice.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Fumonisinas , Criança , Humanos , Técnicas Eletroquímicas , Fumonisinas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
5.
J Mater Chem B ; 10(9): 1453-1462, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188170

RESUMO

Exploration of versatile nanoplatforms within one single nanostructure for multidisciplinary treatment modalities, especially achieving a synergistic therapeutic efficacy of combinational gene/photothermal cancer therapy is still a great challenge in biomedicine and nanotechnology. In this study, a unique photothermal nanocarrier has successfully been designed and developed for a combination of gene therapy (GT) and photothermal therapy (PTT) of cancer cells. Surface-engineered iron oxides (α-Fe2O3) nanoparticles (NPs) with poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings are synthesized using a one-pot in situ oxidative polymerization method. The results show that the as-prepared α-Fe2O3@PEDOT core-shell NPs with a uniform particle size exhibit positively charged surfaces, facilitating efficient siRNA Bcl-2 (B-cell lymphoma-2) uptake for delivery to breast cancer cells. More importantly, α-Fe2O3@PEDOT core-shell NPs not only display good biocompatibility and water dispersibility but also strong optical absorption enhancement in the Vis-NIR region as compared to α-Fe2O3 NPs. The obtained α-Fe2O3@PEDOT core-shell NPs show an efficient photothermal conversion efficacy (η = 54.3%) and photostability under NIR laser irradiation. As a result, both in vitro and in vivo biological studies on two types of breast cancer cells/tumors treated with α-Fe2O3@PEDOT-siRNA nanocomplexes demonstrate high cancer cell apoptosis and tumor inhibition induced by synergistic GT/PTT therapy under mild conditions compared to an individual GT or PTT alone. Taken together, this is the first example of the use of an α-Fe2O3@PEDOT core-shell nanoagent as a siRNA delivery nanocarrier for highly effective gene/photothermal combination anticancer therapy.


Assuntos
Neoplasias da Mama , Compostos Férricos/química , Fototerapia , Neoplasias da Mama/terapia , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Feminino , Humanos , Nanoestruturas , Fototerapia/métodos , Polímeros , RNA Interferente Pequeno/farmacologia
6.
Cancer Cell Int ; 20: 123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322170

RESUMO

BACKGROUND: Kinesin superfamily (KIFs) has a long-reported significant influence on the initiation, development, and progress of breast cancer. However, the prognostic value of whole family members was poorly done. Our study intends to demonstrate the value of kinesin superfamily members as prognostic biomarkers as well as a therapeutic target of breast cancer. METHODS: Comprehensive bioinformatics analyses were done using data from TCGA, GEO, METABRIC, and GTEx. LASSO regression was done to select tumor-related members. Nomogram was constructed to predict the overall survival (OS) of breast cancer patients. Expression profiles were testified by quantitative RT-PCR and immunohistochemistry. Transcription factor, GO and KEGG enrichments were done to explore regulatory mechanism and functions. RESULTS: A total of 20 differentially expressed KIFs were identified between breast cancer and normal tissue with 4 (KIF17, KIF26A, KIF7, KIFC3) downregulated and 16 (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF20B, KIF22, KIF23, KIF24, KIF26B, KIF2C, KIF3B, KIF4A, KIFC1) overexpressed. Among which, 11 overexpressed KIFs (KIF10, KIF11, KIF14, KIF15, KIF18A, KIF18B, KIF20A, KIF23, KIF2C, KIF4A, KIFC1) significantly correlated with worse OS, relapse-free survival (RFS) and distant metastasis-free survival (DMFS) of breast cancer. A 6-KIFs-based risk score (KIF10, KIF15, KIF18A, KIF18B, KIF20A, KIF4A) was generated by LASSO regression with a nomogram validated an accurate predictive efficacy. Both mRNA and protein expression of KIFs are experimentally demonstrated upregulated in breast cancer patients. Msh Homeobox 1 (MSX1) was identified as transcription factors of KIFs in breast cancer. GO and KEGG enrichments revealed functions and pathways affected in breast cancer. CONCLUSION: Overexpression of tumor-related KIFs correlate with worse outcomes of breast cancer patients and can work as potential prognostic biomarkers.

7.
J Biomater Appl ; 33(2): 216-226, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096997

RESUMO

Gene therapy with herpes simplex virus thymidine kinase gene (HSV-TK), which is also known as "suicide" gene therapy, is effective in various tumor models. The lack of a safe and efficient gene delivery system has become a major obstacle to "suicide" gene therapy. In this study, the cytotoxicity and transfection efficiency of graphene oxide-hydroxyapatite (GO-Hap) were analyzed by MTS and flow cytometry, respectively. A series of assays were performed to evaluate the effects of GO-HAp/p-HRE/ERE-Sur-TK combined with ganciclovir treatment on growth of human breast normal and cancer cells. The results showed that GO-HAp nanocomposites effectively transfected cells with minimum toxicity. GO-HAp/p-HRE/ERE-Sur-TK combined with ganciclovir treatment inhibited the proliferation and induced cell apoptosis in cancer cells, while the cytotoxic effects are tolerable in normal breast cells. We conclude that the GO-HAp nanocomposites have significant potential as a gene delivery vector for cancer therapy.


Assuntos
Neoplasias da Mama/terapia , Durapatita/química , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Grafite/química , Simplexvirus/enzimologia , Timidina Quinase/genética , Antivirais/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Ganciclovir/farmacologia , Técnicas de Transferência de Genes , Genes Transgênicos Suicidas , Genes Virais , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Humanos , Nanocompostos/química , Simplexvirus/genética , Transfecção/métodos
8.
Dalton Trans ; 47(33): 11705-11712, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30106076

RESUMO

Metal-organic framework (MOF)-based materials possess numerous attractive characteristics; however, the application of MOF-based photocatalysts in the area of visible-light photocatalytic H2 evolution is still in its infancy. Herein, we develop a series of novel UiO-66-NH2-based composites with embedded NiO nanoparticles via solvothermal treatment and subsequent calcination. Their characterizations demonstrate intimate lattice-level contacts between UiO-66-NH2 photocatalysts and NiO nanoparticles. By optimizing each component, even without noble metal loading, the U6N-NiO-2 sample (the weight ratio of NiO to U6N-NiO-2 is theoretically calculated to be ca. 10 wt%) with 15 mg eosin Y as a sensitizer causes an enhanced H2 generation rate of 2561.32 µmol h-1 g-1 under visible-light irradiation using TEOA as a sacrificial reagent; furthermore, its corresponding quantum efficiency is as high as 6.4% at 420 nm. The H2 evolution activity of U6N-NiO-2 is about 5 times higher than that of the UiO-66-NH2 photocatalyst (denoted as U6N) and 23 times higher than that of U6N-NiO-2 without sensitizer. It is demonstrated that the high efficiency originates from the visible-light generated electrons of eosin Y and UiO-66-NH2, the efficient separation of carriers by the cascaded band structure and more negative CB of NiO as well as the good dispersion of NiO nanoparticles on the octahedral skeleton. This study provides new insights for the design of MOF-based materials without noble metal loading for visible-light photocatalytic H2 evolution.

9.
J Transl Med ; 14: 54, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883017

RESUMO

BACKGROUND: Chromosome 14 open reading frame 166 (C14orf166) is upregulated in various tumors, but its role in breast cancer has not been reported. METHODS: Quantitative real-time PCR and western blot were used to determine C14orf166 expression in normal breast epithelial cells (NBEC), breast cancer cells, and four matched pairs of breast cancer tissues and adjacent noncancerous tissues. Using immunohistochemistry, we determined C14orf166 expression in paraffin-embedded tissues from 121 breast cancer patients. Statistical analyses were performed to examine the associations among C14or166 expression, clinicopathological parameters and prognosis outcome of breast cancer. MTT and colony formation assay were used to determine the effect of C14orf166 on cell proliferation by overexpression or knockdown of C14orf166 level. RESULTS: C14orf166 was upregulated in breast cancer cell lines and tissues compared with the normal cells and adjacent normal breast tissues, high C14orf166 expression was positively with advancing clinical stage. The correlation analysis between C14orf166 expression and clinicopathological characteristics suggested C14orf166 expression was significantly correlated with clinical stages, T classification, N classification and PR expression, Kaplan-Meier curves with log rank tests showed patients with low C14orf166 expression had better survival, Cox-regression analysis suggested C14orf166 was an unfavorable prognostic factor for breast cancer patients. C14orf166 overexpression promoted breast cancer cell proliferation, whereas knockdown of C14orf166 inhibited this effect. Further analysis found C14orf166 overexpression inhibited cell cycle inhibitors P21 and P27 expression, and increased the levels of Cyclin D1 and phosphorylation of Rb, suggesting C14orf166 contributed to cell proliferation by regulating G1/S transition. CONCLUSION: Our findings suggested C14orf166 could be a novel prognostic biomarker of breast cancer, it also contributes to cell proliferation by regulating G1/S transition.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Progressão da Doença , Transativadores/metabolismo , Adulto , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , Estatísticas não Paramétricas , Transativadores/genética , Resultado do Tratamento , Regulação para Cima
10.
Oncol Lett ; 10(3): 1870-1874, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26622767

RESUMO

The transcriptional factor Osterix is specifically expressed in bone tissues to regulate the differentiation and maturation of osteoblasts. Recent studies have also identified the expression of Osterix in a number of cancer tissues, such as kidney and lung cancers. However, the association of Osterix with the metastasis of breast cancers has never been reported. The present study, for the first time, provides evidence supporting the involvement of Osterix in breast cancer metastasis. Western blotting was employed to investigate the expression of Osterix in a number of human breast cancer cell lines with different metastatic features. Gain-of-function and loss-of-function experiments were performed in MCF7 cells (low level of metastasis) and MDA-MB-361 cells (high level of metastasis). The expression of several metastasis-associated genes was analyzed by western blotting and quantitative polymerase chain reaction. A firefly luciferase-based reporter gene assay was conducted in order to study whether Osterix regulated the promoter activities of the MMP2 and MMP9 genes, which play critical roles in cancer metastasis. The results showed that Osterix was highly expressed in the MDA-MB-231 and MDA-MB-361 cells, but was not detectable in the MCF7 cells. The overexpression of Osterix in the MCF7 cells promoted the expression of VEGF, MMP9 and ß-catenin, while downregulating the expression of E-cadherin. In addition, suppression of Osterix expression in the MDA-MB-361 cells reversed the alteration of VEGF, MMP9, ß-catenin and E-cadherin expression. A reporter gene assay suggested that Osterix activated MMP2 and MMP9 promoter activity. In conclusion, Osterix is involved in the metastasis of human breast cancer and may be a target for the efficient treatment of human breast cancers.

11.
J Nanobiotechnology ; 12: 37, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266303

RESUMO

BACKGROUND: Inhalation of chemotherapeutic drugs directly into the lungs augments the drug exposure to lung cancers. The inhalation of free drugs however results in over exposure and causes severe adverse effect to normal cells. In the present study, epidermal growth factor (EGF)-modified gelatin nanoparticles (EGNP) was developed to administer doxorubicin (DOX) to lung cancers. RESULTS: The EGNP released DOX in a sustained manner and effectively internalized in EGFR overexpressing A549 and H226 lung cancer cells via a receptor-mediated endocytosis. In vitro cytotoxicity assay showed that EGNP effectively inhibited the growth of A549 and H226 cells in a dose-dependent manner. In vivo biocompatibility study showed that both GNP and EGNP did not activate the inflammatory response and had a low propensity to cause immune response. Additionally, EGNP maintained a high therapeutic concentration in lungs throughout up to 24 h comparing to that of free drug and GNP, implying the effect of ligand-targeted tumor delivery. Mice treated with EGNP remarkably suppressed the tumor growth (~90% tumor inhibition) with 100% mice survival rate. Furthermore, inhalation of EGNP resulted in elevated levels of cleaved caspase-3 (apoptotic marker), while MMP-9 level significantly reduced comparing to that of control group. CONCLUSIONS: Overall, results suggest that EGF surface-modified nanocarriers could be delivered to lungs via inhalation and controlled delivery of drugs in the lungs will greatly improve the therapeutic options in lung cancer therapy. This ligand-targeted nanoparticulate system could be promising for the lung cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Metástase Neoplásica/tratamento farmacológico , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
J Mater Chem B ; 2(18): 2714-2724, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261437

RESUMO

To overcome drug resistance, the combination of two or more therapeutic strategies with different mechanisms has received much attention in recent years. In this study, a common approach has been used to process curcumin and Zn2+ into colloidal dispersions known as "nanoparticles", which are cheap and easy to prepare with high reproducibility. This novel vehicle has good biocompatibility and high cellular uptake for simultaneously delivering the curcumin drug and siRNA into tumor cells. Complexation of Zn2+ with curcumin enhances the aqueous solubility of the hydrophobic drug curcumin and further improves the cellular uptake and bioavailability. The acid-labile coordination Zn(ii)-O bond in Zn(ii)-curcumin drug nanoparticles (Zn(ii)-Cur NPs) can respond to tumor intracellular acidic pH environments to release curcumin, and promoting acid-triggered intracellular drug release. The positively charged Zn(ii)-Cur NPs can efficiently deliver siRNA into human bladder cancer cells, protect siRNA against enzymatic degradation, and facilitate the escape of loaded siRNA from the endosome into the cytoplasm, which successfully downregulates the targeted EIF5A2 oncogene and consequently inhibits cancer cell growth in vitro and in vivo. Proliferation and migration of cancer cells are inhibited by silencing the expression of EIF5A2 and increasing the ratio of pro-apoptotic BAX to anti-apoptotic BCL-2. In vitro and in vivo experiments have demonstrated that bifunctional Zn(ii)-Cur NPs/siEIF5A2 can combine chemotherapy with gene therapy to afford higher therapeutic efficacy than the individual therapeutic protocols.

13.
Int J Nanomedicine ; 7: 1061-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403488

RESUMO

Nanoparticles have an enormous potential for development in biomedical applications, such as gene or drug delivery. We developed and characterized aminopropyltriethoxysilane-functionalized silicon dioxide nanoparticles (APTES-SiNPs) for gene therapy. Lipofectamine(®) 2000, a commonly used agent, served as a contrast. We showed that APTES-SiNPs had a gene transfection efficiency almost equal to that of Lipofectamine 2000, but with lower cytotoxicity. Thus, these novel APTES-SiNPs can achieve highly efficient transfection of plasmid DNA, and to some extent reduce cytotoxicity, which might overcome the critical drawbacks in vivo of conventional carriers, such as viral vectors, organic polymers, and liposomes, and seem to be a promising nonviral gene therapy vector.


Assuntos
DNA/química , Vetores Genéticos/química , Nanopartículas/química , Silanos/química , Dióxido de Silício/química , Transfecção/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Vetores Genéticos/farmacocinética , Vetores Genéticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Músculo Liso Vascular , Miócitos de Músculo Liso , Tamanho da Partícula , Propilaminas , Silanos/farmacologia
14.
Mol Med Rep ; 5(3): 610-8, 2012 03.
Artigo em Inglês | MEDLINE | ID: mdl-22159329

RESUMO

Marine fungal metabolite 1386A is a newly identified small molecular compound extracted from the mangrove fungus 1386A in the South China Sea. Preliminary experiments have demonstrated its amazing cytotoxity to cancer cells, while the mechanism remains poorly understood. microRNAs (miRNAs) are a newly identified class of small regulatory RNAs which play an important role in gene regulation at the post-transcriptional level. They usually function as oncogenes or tumor suppressors and are related to drug sensitivity and resistance. We aimed to test the hypothesis that the potential antineoplastic compound, 1386A, alters the miRNA profile in MCF-7 and whether its unknown mechanism may be predicted by analysis of the altered miRNA profile. Cell proliferation was analyzed by MTT assay. The alteration of the miRNA expression profile of MCF-7 cells was investigated using advanced microarray technology. Silico analysis using TargetScan was used to predict the putative targeted transcripts encoding the dysregulated miRNAs. 1386A inhibited MCF-7 cell proliferation in a time- and dose-dependent manner (the IC50 value at 48 h was 17.1 µmol/l). 1386A (17.1 µmol/l) significantly altered the global miRNA expression profile of the MCF-7 cells at 48 h. Forty-five miRNAs were differentially expressed in MCF-7 cells. Target prediction suggested that these miRNAs potentially target many oncogenes and tumor-suppressor genes associated with cancer development, progression and metastasis. The promising antineoplastic compound marine fungal metabolite 1386A alters the miRNA profiles of MCF-7 breast cancer cells. Analyzing the alteration of the miRNA profile caused by this potential antineoplastic compound may help to predict the unknown mechanism of 1386A.


Assuntos
Antineoplásicos/farmacologia , Fungos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Análise em Microsséries
15.
Arterioscler Thromb Vasc Biol ; 31(9): 2044-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21817107

RESUMO

OBJECTIVE: The goal of this study was to determine the expression signature and the potential role of microRNAs in human arteries with arteriosclerosis obliterans (ASO). METHODS AND RESULTS: The expression profiles of microRNAs in human arteries with ASO and in normal control arteries were determined by quantitative reverse transcription-polymerase chain reaction array. Among the 617 detected microRNAs, multiple microRNAs were aberrantly expressed in arteries with ASO. Some of these dysregulated microRNAs were further verified by quantitative reverse transcription-polymerase chain reaction. Among them, microRNA-21 (miR-21) was mainly located in arterial smooth muscle cells (ASMCs) and was increased by more than 7-fold in ASO that was related to hypoxia inducible factor 1-α. In cultured human ASMCs, cell proliferation and migration were significantly decreased by inhibition of miR-21. 3'-Untranslated region luciferase assay confirmed that tropomyosin 1 was a target of miR-21 that was involved in miR-21-mediated cellular effects, such as cell shape modulation. CONCLUSION: The results suggest that miR-21 is able to regulate ASMC function by targeting tropomyosin 1. The hypoxia inducible factor-1 α/miR-21/tropomyosin 1 pathway may play a critical role in the pathogenesis of ASO. These findings might provide a new therapeutic target for human ASO.


Assuntos
Arteriosclerose Obliterante/etiologia , Extremidade Inferior/fisiopatologia , MicroRNAs/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Tropomiosina/fisiologia , Actinas/química , Arteriosclerose Obliterante/genética , Arteriosclerose Obliterante/fisiopatologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , MicroRNAs/análise , Músculo Liso Vascular/citologia , Tropomiosina/química
16.
J Atheroscler Thromb ; 17(9): 901-13, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20543524

RESUMO

AIM: Gambogic acid (GA) is the major active compound of Gamboge, a brownish or orange resin exuded from Garcinia hanburryi tree in Southeast Asia. Previous studies have demonstrated that GA exhibits potent anticancer effects by inducing cell cycle arrest or apoptosis in many types of cancer cell lines and blocking angiogenesis via inhibition of vascular endothelial cell proliferation and migration. Proliferation and migration of vascular smooth muscle cells (VSMCs) are critical steps in the progress of atherosclerosis and restenosis after angioplasty. In the present study, we investigated whether GA has an inhibitory effect on the proliferation and migration of VSMCs and its possible mechanism. METHODS: The inhibitory effect of GA on the proliferation induced by PDGF-BB and EGF was measured by using Cell number counting assay and [(3)H]-thymidine incorporation. The effects of GA on the cell cycle progression and viability stimulated by PDGF-BB and EGF were also analyzed by flow cytometry analysis. The inhibitory effect of GA on the migration stimulated by PDGF-BB was measured by transwell chamber assay. The effect of GA on the Cell cycle regulatory molecules (cyclinD1, cyclinE, CDK2, CDK4), PDGFR and its downstream signaling molecules including ERK1/2, PLCγ1, AKT and JNK was measured by western blotting. The effect of GA on the Rac1 activity was measured by using GST-pulldown assay. The effects of GA on the tyrosine phosphorylation stimulated by PDGF-BB and EGF and the capacity of GA binding with PDGF-BB and EGF were also measured. RESULTS: We found that GA significantly inhibited proliferation, migration and DNA synthesis in primary cultured rat aortic VSMCs at concentrations of 0.25, 0.5, 1.0 and 2.0 µmol/L after stimulation of 50 µg/L platelet-derived growth factor-BB (PDGF-BB). GA induced G0/G1 phase arrest in the cell cycle progression of VSMCs. No obvious necrosis or apoptosis was found with GA treatment. The expressions of CDK2, CDK4, cyclin D1 and cyclin E, cell cycle regulatory molecules, were significantly suppressed by GA treatment in a concentration-dependent manner. The phosphorylation of PDGF receptor ß (PDGFR-ß) and the activities of downstream intracellular signaling molecules including phospho-ERK, phospho-PLCγ1, phospho-AKT, phospho-JNK and GTP-Rac1 were also inhibited by GA pretreatment. GA inhibited PDGFR-ß phosphorylation through inhibiting the activity of tyrosine directly, rather than indirectly via binding PDGF-BB. CONCLUSIONS: The results of this study provide preliminary evidence that the inhibitory effects of GA on VSMCs proliferation and migration may be mediated through multiple signal pathways controlled by PDGF-Rß activation and its downstream intracelluar signaling.


Assuntos
Miócitos de Músculo Liso/efeitos dos fármacos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Xantonas/farmacologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Becaplermina , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclinas/metabolismo , DNA/biossíntese , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fase G1/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-sis , Ratos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...