Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 16(12): e202300228, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37679905

RESUMO

We demonstrate label-free imaging of genetically induced hepatocellular carcinoma (HCC) in a murine model provided by two- and three-photon fluorescence microscopy of endogenous fluorophores excited at the central wavelengths of 790, 980 and 1250 nm and reinforced by second and third harmonic generation microscopy. We show, that autofluorescence imaging presents abundant information about cell arrangement and lipid accumulation in hepatocytes and hepatic stellate cells (HSCs), harmonics generation microscopy provides a versatile tool for fibrogenesis and steatosis study. Multimodal images may be performed by a single ultrafast laser source at 1250 nm falling in tissue transparency window. Various grades of HCC are examined revealing fibrosis, steatosis, liver cell dysplasia, activation of HSCs and hepatocyte necrosis, that shows a great ability of multimodal label-free microscopy to intravital visualization of liver pathology development.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Hepatócitos , Células Estreladas do Fígado/patologia , Microscopia/métodos
2.
J Biophotonics ; 14(3): e202000301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33205577

RESUMO

We present experiments on cell cultures and brain slices that demonstrate two-photon optogenetic pH sensing and pH-resolved brain imaging using a laser driver whose spectrum is carefully tailored to provide the maximum contrast of a ratiometric two-photon fluorescence readout from a high-brightness genetically encoded yellow-fluorescent-protein-based sensor, SypHer3s. Two spectrally isolated components of this laser field are set to induce two-photon-excited fluorescence (2PEF) by driving SypHer3s through one of two excitation pathways-via either the protonated or deprotonated states of its chromophore. With the spectrum of the laser field accurately adjusted for a maximum contrast of these two 2PEF signals, the ratio of their intensities is shown to provide a remarkably broad dynamic range for pH measurements, enabling high-contrast optogenetic deep-brain pH sensing and pH-resolved 2PEF imaging within a vast class of biological systems, ranging from cell cultures to the living brain.


Assuntos
Optogenética , Fótons , Encéfalo/diagnóstico por imagem , Concentração de Íons de Hidrogênio , Neuroimagem
3.
J Biophotonics ; 13(3): e201900243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31568649

RESUMO

We demonstrate an accurate quantitative characterization of absolute two- and three-photon absorption (2PA and 3PA) action cross sections of a genetically encodable fluorescent marker Sypher3s. Both 2PA and 3PA action cross sections of this marker are found to be remarkably high, enabling high-brightness, cell-specific two- and three-photon fluorescence brain imaging. Brain imaging experiments on sliced samples of rat's cortical areas are presented to demonstrate these imaging modalities. The 2PA action cross section of Sypher3s is shown to be highly sensitive to the level of pH, enabling pH measurements via a ratiometric readout of the two-photon fluorescence with two laser excitation wavelengths, thus paving the way toward fast optical pH sensing in deep-tissue experiments.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica , Fótons , Animais , Encéfalo/diagnóstico por imagem , Neuroimagem , Ratos
4.
J Biophotonics ; 12(11): e201800432, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30891920

RESUMO

Methods of nonlinear optics provide a vast arsenal of tools for label-free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament-protein-antibody staining, subject to limitations and difficulties especially severe in live-brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long-standing challenges in label-free astroglia imaging. We demonstrate that, with a suitable beam-focusing geometry and careful driver-pulse compression, microscopy of second-harmonic generation (SHG) can enable a high-resolution label-free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear-optical imaging of red blood cells based on third-harmonic generation (THG) enhanced by a three-photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high-contrast, high-resolution, stain-free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood-vessel walls and astrocyte-process endfeet on gliovascular interfaces with a spatial resolution within 1 µm at focusing depths up to 20 µm inside a brain.


Assuntos
Astrócitos/citologia , Vasos Sanguíneos/diagnóstico por imagem , Neuroglia/citologia , Dinâmica não Linear , Imagem Óptica/métodos , Animais , Eritrócitos/citologia , Fluorescência , Masculino , Ratos , Ratos Wistar
5.
J Biophotonics ; 12(5): e201800353, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30414251

RESUMO

We present one- and two-photon-absorption fluorescence spectroscopic analysis of biliverdin (BV) chromophore-based single-domain near-infrared fluorescent proteins (iRFPs). The results of these studies are used to estimate the internal electric fields acting on BV inside iRFPs and quantify the electric dipole properties of this chromophore, defining the red shift of excitation and emission spectra of BV-based iRFPs. The iRFP studied in this work is shown to fit well the global diagram of the red-shift tunability of currently available BV-based iRFPs as dictated by the quadratic Stark effect, suggesting the existence of the lower bound for the strongest red shifts attainable within this family of fluorescent proteins. The absolute value of the two-photon absorption (TPA) cross section of a fluorescent calcium sensor based on the studied iRFP is found to be significantly larger than the TPA cross sections of other widely used genetically encodable fluorescent calcium sensors.


Assuntos
Biliverdina/química , Raios Infravermelhos , Proteínas Luminescentes/química , Fótons , Espectrometria de Fluorescência , Razão Sinal-Ruído
6.
Neurosci Lett ; 687: 153-157, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30267850

RESUMO

Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of single neurons using thermosensitive cation channels and IR stimulation. The main advantage of IR stimulation compared to conventional visible light optogenetics is the depth of penetration (up to millimeters). Due to physiological limitations, thermogenetic molecular tools for mammalian brain stimulation remain poorly developed. Here, we tested the possibility of employment of this new technique for stimulation of neocortical neurons. The method is based on activation gating of TRPV1-L channels selectively expressed in specific cells. Pyramidal neurons of layer 2/3 of neocortex were transfected at an embryonic stage using a pCAG expression vector and electroporation in utero. Depolarization and spiking responses of TRPV1L+ pyramidal neurons to IR radiation were recorded electrophysiologically in acute brain slices of adult animals with help of confocal visualization. As TRPV1L-expressing neurons are not sensitive to visible light, there were no limitations of the use of this technique with conventional fluorescence imaging. Our experiments demonstrated that the TRPV1-L+ pyramidal neurons preserve their electrical excitability in acute brain slices, while IR radiation can be successfully used to induce single neuronal depolarization and spiking at near physiological temperatures. Obtained results provide important information for adaptation of thermogenetic technology to mammalian brain studies in vivo.


Assuntos
Potenciais de Ação/fisiologia , Neocórtex/citologia , Células Piramidais/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Linhagem Celular , Estimulação Elétrica/métodos , Técnicas de Patch-Clamp/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA