Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 19091, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836753

RESUMO

Modulation of a microwave signal generated by the spin-torque oscillator (STO) based on a magnetic tunnel junction (MTJ) with perpendicularly magnetized free layer is investigated. Magnetic field inductive loop was created during MTJ fabrication process, which enables microwave field application during STO operation. The frequency modulation by the microwave magnetic field of up to 3 GHz is explored, showing a potential for application in high-data-rate communication technologies. Moreover, an inductive loop is used for self-synchronization of the STO signal, which after field-locking, exhibits significant improvement of the linewidth and oscillation power.

2.
Sensors (Basel) ; 18(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213081

RESUMO

We propose a simple model for prediction of magnetic noise level in tunneling magnetoresistance (TMR) sensors. The model reproduces experimental magnetic 1/f and white noise components, which are dependent on sensors resistance and field sensitivity. The exact character of this dependence is determined by comparing the results with experimental data using a statistical cross-validation procedure. We show that the model is able to correctly predict magnetic noise level for systems within wide range of resistance, volume and sensitivity, and that it can be used as a robust method for noise evaluation in TMR sensors based on a small number of easily measurable parameters only.

3.
Sci Rep ; 7(1): 10172, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860571

RESUMO

Perpendicular magnetic tunnel junctions (MTJ) with a bottom pinned reference layer and a composite free layer (FL) are investigated. Different thicknesses of the FL were tested to obtain an optimal balance between tunneling magnetoresistance (TMR) ratio and perpendicular magnetic anisotropy. After annealing at 400 °C, the TMR ratio for 1.5 nm thick CoFeB sublayer reached 180% at room temperature and 280% at 20 K with an MgO tunnel barrier thickness corresponding to the resistance area product RA = 10 Ohmµm2. The voltage vs. magnetic field stability diagrams measured in pillar-shaped MTJs with 130 nm diameter indicate the competition between spin transfer torque (STT), voltage controlled magnetic anisotropy (VCMA) and temperature effects in the switching process. An extended stability phase diagram model that takes into account all three effects and the effective damping measured independently using broadband ferromagnetic resonance technique enabled the determination of both STT and VCMA coefficients that are responsible for the FL magnetization switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...