Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(47): eadd3868, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417508

RESUMO

Digital camera sensors use color filters on photodiodes to achieve color selectivity. As the color filters and photosensitive silicon layers are separate elements, these sensors suffer from optical cross-talk, which sets limits to the minimum pixel size. Here, we report hybrid silicon-aluminum nanostructures in the extreme limit of zero distance between color filters and sensors. This design could essentially achieve submicrometer pixel dimensions and minimize the optical cross-talk arising from tilt illuminations. The designed hybrid silicon-aluminum nanostructure has dual functionalities. Crucially, it supports a hybrid Mie-plasmon resonance of magnetic dipole to achieve color-selective light absorption, generating electron hole pairs. Simultaneously, the silicon-aluminum interface forms a Schottky barrier for charge separation and photodetection. This design potentially replaces the traditional dye-based filters for camera sensors at ultrahigh pixel densities with advanced functionalities in sensing polarization and directionality, and UV selectivity via interband plasmons of silicon.

2.
Nanotechnology ; 26(35): 354002, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26266548

RESUMO

The fluctuation-dissipation theorem relates the thermal noise spectrum of a conductor to its linear response properties, with the ohmic resistance arising from the electron scattering being the most notable linear response property. But the linear response also includes the collective inertial acceleration of electrons, which should in principle influence the thermal noise spectrum as well. In practice, this effect would be largely masked by the Planck quantization for traditional conductors with short electron scattering times. But recent advances in nanotechnology have enabled the fabrication of conductors with greatly increased electron scattering times, with which the collective inertial effect can critically affect the thermal noise spectrum. In this paper we highlight this collective inertial effect-that is, the plasmonic effect-on the thermal noise spectrum under the framework of semiclassical electron dynamics, from both fundamental microscopic and practical modeling points of view. In graphene, where non-zero collective inertia arises from zero single-electron effective mass and where both electron and hole bands exist together, the thermal noise spectrum shows rich temperature and frequency dependencies, unseen in traditional conductors.

3.
Nano Lett ; 15(8): 5001-9, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26154440

RESUMO

The dispersion relation of plasmons in graphene with a periodic lattice of apertures takes a band structure. Light incident on this plasmonic crystal excites only particular plasmonic modes in select bands. The selection rule is not only frequency/wavevector matching but also symmetry matching, where the symmetry of plasmonic modes originates from the point group symmetry of the lattice. We demonstrate versatile manipulation of light-plasmon coupling behaviors by engineering the symmetry of the graphene plasmonic crystal.

4.
Nano Lett ; 14(5): 2479-84, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24678885

RESUMO

We introduce far-infrared graphene plasmonic crystals. Periodic structural perturbation-in a proof-of-concept form of hexagonal lattice of apertures-of a continuous graphene medium alters delocalized plasmonic dynamics, creating plasmonic bands in a manner akin to photonic crystals. Fourier transform infrared spectroscopy demonstrates band formation, where far-infrared irradiation excites a unique set of plasmonic bands selected by phase matching and symmetry-based selection rules. This band engineering may lead to a new class of graphene plasmonic devices.

5.
Opt Express ; 20(23): 25345-55, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187351

RESUMO

We design and experimentally demonstrate an ultrashort integrated polarization splitter on silicon-on-insulator (SOI) platform. Our polarization splitter uses a hybrid plasmonic waveguide as the middle waveguide in a three-core arrangement to achieve large birefringence, allowing only transverse-magnetic (TM) polarized light to directionally couple to the cross port of the directional coupler. Finite-difference time-domain (FDTD) and eigenmode expansive (EME) calculations show that the splitter can achieve an extinction ratio of greater than 15 dB with less than 0.5 dB insertion losses. The polarization splitter was fabricated on SOI platform using standard complementary metal-oxide-semiconductor (CMOS) technology and measured at telecommunications wavelengths. Extinction ratios of 12.3 dB and 13.9 dB for the transverse-electric (TE) and TM polarizations were obtained, together with insertion losses of 2.8 dB and 6.0 dB.

6.
Opt Express ; 20(8): 8256-69, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513538

RESUMO

Transfer matrices for one-dimensional (1-D) multi-layered magneto-optical (MO) waveguides are formulated to analytically calculate the nonreciprocal phase shifts (NRPS). The Cauchy contour integration (CCI) method is introduced in detail to calculate the two complex roots of the transcendental equation corresponding to backward and forward waves. By virtue of perturbation theory and the variational principle, we also present the general upper limit of NRPSs in 1-D MO waveguides. These analytical results are applied to compare silicon-on-insulator (SOI) based MO waveguides. First, a three-layered waveguide system with MO medium is briefly examined and discussed to check the validity and efficiency of the above theory. Then we revisited the reported low-index-gap-enhanced NRPSs in MO waveguides and obtained substantially different results. Finally, the potential of common plasmonic waveguides to enhance the nonreciprocal effect is investigated by studying different waveguides composed of Metal, MO medium and dielectrics. Our study shows that the reasonable NRPSs can be optimized to some extent but not as much as claimed in previous publications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...