Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(7): 2104-2121, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36647612

RESUMO

The emergence of SARS-CoV-2 in December 2019 has become a global issue due to the continuous upsurge in patients and the lack of drug efficacy for treatment. SARS-CoV-2 3CLPro is one of the most intriguing biomolecular targets among scientists worldwide for developing antiviral drugs due to its relevance in viral replication and transcription. Herein, we utilized computer-assisted drug screening to investigate 326 natural products from Thai traditional plants using structure-based virtual screening against SARS-CoV-2 3CLPro. Following the virtual screening, the top 15 compounds based on binding energy and their interactions with key amino acid Cys145 were obtained. Subsequently, they were further evaluated for protein-ligand complex stability via molecular dynamics simulation and binding free energy calculation using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches. Following drug-likeness and ADME/Tox assessments, seven bisbenzylisoquinolines were obtained, including neferine (3), liensinine (4), isoliensinine (5), dinklacorine (8), tiliacorinine (13), 2'-nortiliacorinine (14), and yanangcorinine (15). These compounds computationally showed a higher binding affinity than native N3 and GC-373 inhibitors and attained stable interactions on the active site of 3CLpro during 100 ns in molecular dynamics (MD) simulation. Moreover, the in vitro enzymatic assay showed that most bisbenzylisoquinolines could experimentally inhibit SARS-CoV-2 3CLPro. To our delight, isoliensinine (5) isolated from Nelumbo nucifera demonstrated the highest inhibition of protease activity with the IC50 value of 29.93 µM with low toxicity on Vero cells. Our findings suggested that bisbenzylisoquinoline scaffolds could be potentially used as an in vivo model for the development of effective anti-SARS-CoV-2 drugs.


Assuntos
Antivirais , Benzilisoquinolinas , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Benzilisoquinolinas/farmacologia , Chlorocebus aethiops , COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , SARS-CoV-2/efeitos dos fármacos , Células Vero , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia
2.
J Org Chem ; 87(18): 12052-12064, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36073019

RESUMO

The Lewis acid organocatalytic system of lithium tetramethylene-tethered bis[N-(N'-butylimidazol-2-ylidene)] N-heterocyclic carbene (1,4-bisNHC) including lithium benzyloxide and benzyl alcohol has been successfully utilized in the ring-opening polymerization (ROP) of ε-caprolactone (CL) for the first time. The catalytic performance of this organic catalyst in the synthesis of high-molecular-weight polymers was investigated via bulk polymerization using different combinations of tetramethylene-tethered bis[N-(N'-butylimidazolium)] hexafluorophosphate (1,4-bis[Bim][PF6]), benzyl alcohol (BnOH), and n-butyl lithium (nBuLi) ([1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi]) with the molar ratios of 0:2:2, 1:1:3, 1:2:3, and 1:2:4. The results showed that the molar ratio of 1:2:3 efficiently and rapidly initiated the bulk ROP of CL at room temperature with a high molar ratio of CL to 1,4-bis[Bim][PF6] of 3000/1 and produced the highest number of average-molecular-weight (Mn) poly(ε-caprolactone) (103,057 g mol-1) with the dispersity (D̵) and %conversion of 1.73 and 98% in a short period of time (152 s). From comparative studies, the relative polymerization rates of the bulk ROP of CL with different [1,4-bis[Bim][PF6]]/[BnOH]/[nBuLi] molar ratios was determined in the following order: 1:2:4 > 1:1:3 > 1:2:3 > 0:2:2. For mechanistic investigation, the bulk ROP mechanism of CL with our organic catalyst was proposed through the intramolecular bis-lithium-carbene interaction pathway for 1,4-bisNHC1,1,3, 1,4-bisNHC1,2,3, and 1,4-bisNHC1,2,4 systems.

3.
Polymers (Basel) ; 13(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960841

RESUMO

In this work, we successfully synthesized high thermal stable 1,n-bis(N-(N'-butylimidazolium)alkane bishexafluorophosphates (1,n-bis[Bim][PF6], n = 4, 6, 8, and 10) catalysts in 55-70% yields from imidazole which were applied as non-toxic DILs catalysts with 1-butanol as initiator for the bulk ROP of ε-caprolactone (CL) in the varied ratio of CL/nBuOH/1,4-bis[Bim][PF6] from 200/1.0/0.25-4.0 to 700/1.0/0.25-4.0 by mol%. The result found that the optimal ratio of CL/nBuOH/1,4-bis[Bim][PF6] 400/1.0/0.5 mol% at 120 °C for 72 h led to the polymerization conversions higher than 95%, with the molecular weight (Mw) of PCL 20,130 g mol-1 (D~1.80). The polymerization rate of CL increased with the decreasing linker chain length of ionic liquids. Moreover, the mechanistic study was investigated by DFT using B3LYP (6-31G(d,p)) as basis set. The most plausible mechanism included the stepwise and coordination insertion in which the alkoxide insertion step is the rate-determining step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...