Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L76-L87, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472344

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common lung disease of extreme prematurity, yet mechanisms that associate with or identify neonates with increased susceptibility for BPD are largely unknown. Combining artificial intelligence with gene expression data is a novel approach that may assist in better understanding mechanisms underpinning chronic lung disease and in stratifying patients at greater risk for BPD. The objective of this study is to develop an early peripheral blood transcriptomic signature that can predict preterm neonates at risk for developing BPD. Secondary analysis of whole blood microarray data from 97 very low birth weight neonates on day of life 5 was performed. BPD was defined as positive pressure ventilation or oxygen requirement at 28 days of age. Participants were randomly assigned to a training (70%) and testing cohort (30%). Four gene-centric machine learning models were built, and their discriminatory abilities were compared with gestational age or birth weight. This study adheres to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement. Neonates with BPD (n = 62 subjects) exhibited a lower median gestational age (26.0 wk vs. 30.0 wk, P < 0.01) and birth weight (800 g vs. 1,280 g, P < 0.01) compared with non-BPD neonates. From an initial pool (33,252 genes/patient), 4,523 genes exhibited a false discovery rate (FDR) <1%. The area under the receiver operating characteristic curve (AUC) for predicting BPD utilizing gestational age or birth weight was 87.8% and 87.2%, respectively. The machine learning models, using a combination of five genes, revealed AUCs ranging between 85.8% and 96.1%. Pathways integral to T cell development and differentiation were associated with BPD. A derived five-gene whole blood signature can accurately predict BPD in the first week of life.


Assuntos
Displasia Broncopulmonar , Recém-Nascido , Humanos , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/genética , Peso ao Nascer , Transcriptoma/genética , Inteligência Artificial , Recém-Nascido Prematuro , Idade Gestacional
2.
Pediatr Ann ; 51(10): e396-e404, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36215088

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease of extreme prematurity. Despite more than 50 years of research, current treatments are ineffective, and clinicians are largely unable to accurately predict which neonates the condition will develop in. A deeper understanding of the molecular mechanisms underlying the characteristic arrest in lung development are warranted. Integrating high-fidelity technology from precision medicine approaches may fill this gap and provide the tools necessary to identify biomarkers and targetable pathways. In this review, we describe insights garnered from current studies using omics for BPD prediction and stratification. We conclude by describing novel programs that will integrate multi-omics in efforts to better understand and treat the pathogenesis of BPD. [Pediatr Ann. 2022;51(10):e396-e404.].


Assuntos
Displasia Broncopulmonar , Doenças do Prematuro , Big Data , Biomarcadores , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/terapia , Humanos , Recém-Nascido , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...