Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 71(2): 285-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18211006

RESUMO

We report the determination of the absolute configuration (AC) of the iridoid natural product oruwacin by comparison of the optical rotations, [alpha] D, of its two enantiomers, calculated using time-dependent density functional theory (TDDFT), to the experimental [alpha] D value, +193. Conformational analysis of oruwacin using density functional theory (DFT) identifies eight conformations which are significantly populated at room temperature. [alpha] D values of these eight conformations are calculated using TDDFT at the B3LYP/aug-cc-pVDZ//B3LYP/6-31G* level, leading to the conformationally averaged [alpha] D values of -193 for the (1 R,5 S,8 S,9 S,10 S)-enantiomer and +193 for the (1 S,5 R,8 R,9 R,10 R)-enantiomer. Comparison of the calculated [alpha] D values to the value of the natural product proves that naturally occurring oruwacin has the AC 1 S,5 R,8 R,9 R,10 R. This AC is opposite to that assigned by Adesogan by comparison of the [alpha] D of oruwacin to that of the iridoid plumericin. Our results show that the assignment of the AC of a natural product by comparison of its [alpha] D to that of a chemically related molecule can be unreliable and should not be assumed to be definitive.


Assuntos
Produtos Biológicos/química , Iridoides/química , Estrutura Molecular , Morinda/química , Folhas de Planta/química , Estereoisomerismo
2.
J Org Chem ; 70(10): 3903-13, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15876078

RESUMO

[reaction: see text] The Baeyer-Villiger oxidation of (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione, 1, can lead to four keto-lactone products, 2a-d. A single isomer is obtained experimentally. We have used IR and VCD spectroscopies to identify the structure of this product. DFT calculations of the IR and VCD spectra of 2a-d show unambiguously that the experimental product is (+)-(1R,6R)-2a, and not the expected product 2b. NMR studies, including comparison of DFT and experimental 1H and 13C spectra, support this conclusion. This work provides the first example of the use of VCD spectroscopy to discriminate between structural isomers of a chiral molecule. The specific rotation of (+)-(1R,6R)-2a, predicted using TDDFT methods, is negative demonstrating that absolute configurations determined from TDDFT calculations of specific rotations are not 100% reliable.

3.
Chirality ; 17 Suppl: S52-64, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15747317

RESUMO

The absolute configuration (AC) of a chiral molecule can be determined via calculation of its specific rotation. Currently, the latter is most accurately carried out using the TDDFT/GIAO methodology. Here we examine the reliability of this methodology in determining ACs of molecules with small specific rotations. We report TDDFT/GIAO B3LYP/aug-cc-pVDZ//B3LYP/6-31G* calculations of the sodium D line specific rotations, [alpha]D, of 65 conformationally rigid chiral molecules whose experimental [alpha]D values are small (<100). The RMS deviations, sigma, of calculated and experimental [alpha]D values is 28.9. The distribution of deviations is approximately Gaussian, i.e., random. For eight molecules, more than 10% of the set, the sign of the predicted [alpha]D is incorrect. In determining an AC of a rigid molecule from [alpha]D with 95% confidence, the calculated [alpha]D value must lie within +/-2sigma of the experimental [alpha]D for one, but not both, of the possible ACs. For the 65 molecules of this study +/-2sigma is 57.8. For conformationally flexible molecules, the error bar is +/- >57.8.

4.
J Org Chem ; 69(25): 8709-17, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15575747

RESUMO

The recently developed Gauge-Invariant (Including) Atomic Orbital (GIAO) based Time-Dependent Density Functional Theory (TDDFT) methodology for the calculation of transparent spectral region optical rotations of chiral molecules provides a new approach to the determination of absolute configurations. Here, we discuss the application of the TDDFT/GIAO methodology to chiral alkanes. We report B3LYP/aug-cc-pVDZ calculations of the specific rotations of the 22 chiral alkanes, 2-23, of well-established Absolute Configuration. The average absolute deviation of calculated and experimental [alpha](D) values for molecules 2-22 is 24.8. In two of the molecules 2-23, trans-pinane, 10, and endo-isocamphane, 13, the sign of [alpha](D) is incorrectly predicted. Our results demonstrate that absolute configurations of alkanes can be reliably assigned by using B3LYP/aug-cc-pVDZ TDDFT/GIAO calculations if, but only if, [alpha](D) is significantly greater than 25. In the case of (-)-anti-trans-anti-trans-anti-trans-perhydrotriphenylene, 1, [alpha](D) is -93 and TDDFT/GIAO calculations reliably lead to the absolute configuration R(-).

5.
J Am Chem Soc ; 126(24): 7514-21, 2004 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15198598

RESUMO

The technique of time-dependent density functional theory (TDDFT) has very recently been applied to the calculation of both transparent spectral region optical rotations and electronic circular dichroism (CD). Here, we report the concerted application of the new methodologies to the determination of the absolute configuration (AC) of [3(2)](1,4)barrelenophanedicarbonitrile, 1, the first optically active barrelenophane. 1 is conformationally flexible: the two three-carbon bridges of 1 can each exhibit two conformations, leading to three inequivalent conformations of 1: a, b, and c. Conformational structures and energies are predicted using DFT at the B3LYP/6-31G level. Comparison of the calculated structures to structures obtained via X-ray crystallography of (+)-1 shows that (remarkably) all three conformations a-c are simultaneously present in crystalline (+)-1. The sodium D line specific rotations, [alpha](D), and CD spectra of a-c are calculated using TDDFT at the B3LYP/aug-cc-pVDZ level. Comparison of the conformationally averaged specific rotation and CD spectrum to the experimental data of Matsuda-Sentou and Shinmyozu leads to the AC 9S,12S(+)/9R,12R(-). The same AC is obtained both from [alpha](D) and from the CD, strongly supporting its reliability.

6.
J Org Chem ; 69(6): 1948-58, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15058939

RESUMO

The concerted use of ab initio time-dependent density functional theory (TDDFT) calculations of transparent spectral region optical rotation and of circular dichroism has recently become practicable, permitting the concerted use of transparent spectral region optical rotation and circular dichroism in determining the absolute configurations of chiral molecules. Here, we report concerted TDDFT calculations of the transparent spectral region specific rotations and of the circular dichroism spectra originating in n --> pi C=O group excitations of four bicyclo[3.3.1]nonane diones, 1-4. Comparison to experiment yields absolute configurations for 1-4. For each dione, specific rotations and circular dichroism spectra give identical absolute configurations. Our results are consistent with previous work, with the exception of the Octant Rule-derived absolute configuration of the 2,9-dione.

7.
Chirality ; 15 Suppl: S57-64, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12884375

RESUMO

Ab initio Density Functional Theory (DFT) calculations of transparent spectral region, discrete frequency specific rotations were used to assign the absolute configurations (ACs) of: 1, 2H-naphtho[1,8-bc]thiophene 1-oxide; 2, m-F-phenyl glycidic acid methyl ester; 3, o-Br-phenyl glycidic acid methyl ester; 4, p-CH(3)-phenyl glycidic acid methyl ester; 5, 2-(1-hydroxyethyl)-chromen-4-one; and 6, 6-Br-2-(1-hydroxyethyl)-chromen-4-one. The ACs of 5 and 6 were previously determined via X-ray crystallography to be: 5, R(-)/S(+); 6, R(+)/S(-). The ACs obtained using [alpha](D) are the same for both 5 and 6: R(+)/S(-). We conclude that the previously reported AC of 5 is incorrect.

8.
Org Lett ; 4(26): 4595-8, 2002 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-12489938

RESUMO

[structure: see text] We report the first determinations of the absolute configurations (ACs) of chiral molecules using discrete frequency, transparent spectral region optical rotations calculated using density functional theory (DFT). The ACs of 2H-naphtho[1,8-bc]thiophene 1-oxide (3), naphtho[1,8-cd]-1,2-dithiole 1-oxide (4), and 9-phenanthryl methyl sulfoxide (5) are determined by comparison of their specific rotations to values calculated via the time-dependent DFT/gauge-invariant atomic orbital (TDDFT/GIAO) methodology using the B3LYP functional and the aug-cc-pVDZ basis set.

9.
J Org Chem ; 67(23): 8090-6, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12423137

RESUMO

The chiral monosubstituted derivatives of spiropentane, spiropentylcarboxylic acid methyl ester, 1, and spiropentyl acetate, 2, have been synthesized in optically active form. Configurational and conformational analysis of 1 and 2 has been carried out using infrared (IR) and vibrational circular dichroism (VCD) spectroscopies. Analysis of the experimental IR and VCD spectra has been carried out using ab initio density functional theory (DFT). For both 1 and 2, DFT predicts two populated conformations. Comparison to experiment of the conformationally averaged IR and VCD spectra of 1 and 2, predicted using DFT, provides unequivocal evidence of the predicted conformations and yields the absolute configurations R(-)/S(+) for 1 and R(+)/S(-) for 2. These absolute configurations are consistent with the R(-)/S(+) absolute configuration of spiropentylcarboxylic acid, assigned previously via X-ray crystallography of its alpha-phenylethylammonium salt.

10.
Chirality ; 14(4): 288-96, 2002 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-11968068

RESUMO

We report ab initio calculations of the frequency-dependent electric dipole-magnetic dipole polarizabilities, beta(nu), at the sodium D line frequency and, thence, of the specific rotations, [alpha](D), of 2,7,8-trioxabicyclo[3.2.1]octane, 1, and its 1-methyl derivative, 2, using the Density Functional Theory (DFT) and Hartree-Fock/Self-Consistent Field (HF/SCF) methodologies. Gauge-invariant (including) atomic orbitals (GIAOs) are used to ensure origin-independent [alpha](D) values. Using large basis sets which include diffuse functions DFT [alpha](D) values are in good agreement with experimental values (175.8 degrees and 139.2 degrees for (1S,5R)-1 and -2, respectively); errors are in the range 25-35 degrees. HF/SCF [alpha](D) values, in contrast, are much less accurate; errors are in the range 75-95 degrees. The use of small basis sets which do not include diffuse functions substantially lowers the accuracy of predicted [alpha](D) values, as does the use of the static limit approximation: beta(nu) approximately beta(o). The use of magnetic-field-independent atomic orbitals, FIAOs, instead of GIAOs, leads to origin-dependent, and therefore nonphysical, [alpha](D) values. We also report DFT calculations of [alpha](D) for the 1-phenyl derivative of 1, 3. DFT calculations find two stable conformations, differing in the orientation of the phenyl group, of very similar energy, and separated by low barriers. Values of [alpha](D) predicted using two different algorithms for averaging over phenyl group orientations are in good agreement with experiment. In principle, the absolute configuration (AC) of a chiral molecule can be assigned by comparison of the optical rotation predicted ab initio to the experimental value. Our results demonstrate the critical importance of the choice of ab initio methodology in obtaining reliable optical rotations and, hence, ACs, and show that, at the present time, DFT constitutes the method of choice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...