Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cells ; 8(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349736

RESUMO

: Aggregated forms of the synaptic protein α-synuclein (αS) have been proposed to operate as a molecular trigger for microglial inflammatory processes and neurodegeneration in Parkinson´s disease. Here, we used brain microglial cell cultures activated by fibrillary forms of recombinant human αS to assess the anti-inflammatory and neuroprotective activities of the antibiotic rifampicin (Rif) and its autoxidation product rifampicin quinone (RifQ). Pretreatments with Rif and RifQ reduced the secretion of prototypical inflammatory cytokines (TNF-, IL-6) and the burst of oxidative stress in microglial cells activated with αS fibrillary aggregates. Note, however, that RifQ was constantly more efficacious than its parent compound in reducing microglial activation. We also established that the suppressive effects of Rif and RifQ on cytokine release was probably due to inhibition of both PI3K- and non-PI3K-dependent signaling events. The control of oxidative stress appeared, however, essentially dependent on PI3K inhibition. Of interest, we also showed that RifQ was more efficient than Rif in protecting neuronal cells from toxic factors secreted by microglia activated by αS fibrils. Overall, data with RifQ are promising enough to justify further studies to confirm the potential of this compound as an anti-parkinsionian drug.


Assuntos
Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Rifampina/análogos & derivados , Rifampina/farmacologia , alfa-Sinucleína/metabolismo , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Estrutura Molecular , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo
2.
J Neural Transm (Vienna) ; 125(10): 1403-1415, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30109452

RESUMO

The prevalence of Parkinson's disease, which affects millions of people worldwide, is increasing due to the aging population. In addition to the classic motor symptoms caused by the death of dopaminergic neurons, Parkinson's disease encompasses a wide range of nonmotor symptoms. Although novel disease-modifying medications that slow or stop Parkinson's disease progression are being developed, drug repurposing, which is the use of existing drugs that have passed numerous toxicity and clinical safety tests for new indications, can be used to identify treatment compounds. This strategy has revealed that tetracyclines are promising candidates for the treatment of Parkinson's disease. Tetracyclines, which are neuroprotective, inhibit proinflammatory molecule production, matrix metalloproteinase activity, mitochondrial dysfunction, protein misfolding/aggregation, and microglial activation. Two commonly used semisynthetic second-generation tetracycline derivatives, minocycline and doxycycline, exhibit effective neuroprotective activity in experimental models of neurodegenerative/ neuropsychiatric diseases and no substantial toxicity. Moreover, novel synthetic tetracyclines with different biological properties due to chemical tuning are now available. In this review, we discuss the multiple effects and clinical properties of tetracyclines and their potential use in Parkinson's disease treatment. In addition, we examine the hypothesis that the anti-inflammatory activities of tetracyclines regulate inflammasome signaling. Based on their excellent safety profiles in humans from their use for over 50 years as antibiotics, we propose the repurposing of tetracyclines, a multitarget antibiotic, to treat Parkinson's disease.


Assuntos
Reposicionamento de Medicamentos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Tetraciclinas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Inflamassomos/antagonistas & inibidores , Minociclina/farmacologia , Minociclina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Relação Estrutura-Atividade , Tetraciclinas/química , Tetraciclinas/farmacologia
3.
Prog Neurobiol ; 162: 17-36, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29241812

RESUMO

Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short. The exploration of new uses for approved drugs provides a useful alternative to fill the gap between the increasing incidence of neurodegenerative diseases and the long-term assessment of classical drug discovery technologies. Drug re-profiling is currently the quickest possible transition from bench to bedside. In this way, experimental evidence shows that some antibiotic compounds exert neuroprotective action through anti-aggregating activity on disease-associated proteins. The finding that many antibiotics can cross the blood-brain barrier and have been used for several decades without serious toxic effects makes them excellent candidates for therapeutic switching towards neurological disorders. The present review is, to our knowledge, the first extensive evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known disease-associated proteins. In addition, we propose a common structural signature derived from the antiaggregant antibiotic molecules that could be relevant to rational drug discovery.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Antibacterianos/farmacologia , Reposicionamento de Medicamentos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Humanos
4.
Rev. neurol. (Ed. impr.) ; 65(10): 457-468, 16 nov., 2017. tab, graf, ilus
Artigo em Espanhol | IBECS | ID: ibc-169069

RESUMO

Introducción. Numerosos trastornos neurodegenerativos se han asociado directamente a la acumulación de fibras amiloides. Estas fibras están formadas por proteínas o péptidos con conformaciones alteradas y que se agregan in vivo en asociación con polisacáridos de tipo heparán sulfatos. Objetivos. Examinar los conceptos más recientes sobre la biología de los heparán sulfatos y su papel en la agregación del péptido Abeta, de la proteína tau, de la alfa-sinucleína y de los priones, y analizar sus implicaciones en trastornos neurodegenerativos como las enfermedades de Alzheimer y de Parkinson y las enfermedades priónicas. Desarrollo. In vitro, los heparán sulfatos han desempeñado un papel importante en el proceso de oligomerización y fibrilación de proteínas o péptidos amiloidógenos, en la estabilización de estos cuerpos y su resistencia a la proteólisis, participando así en la formación de una gran variedad de fibras amiloides. Los heparán sulfatos se han relacionado también con el proceso de internalización de fibras proamiloides durante el proceso de propagación intercelular (spreading) considerado como central en la evolución de las proteinopatías, cuyo mejor ejemplo es la enfermedad de Alzheimer. Conclusión. Este trabajo sugiere que las estructuras finas de los heparán sulfatos, sus localizaciones celulares y tisulares, así como sus concentraciones locales, pueden regular los procesos de amiloidosis. Avances en la comprensión de esta área de la gliconeurobiología permitirán mejorar la comprensión de los mecanismos celulares y moleculares del proceso neurodegenerativo (AU)


Introduction. A number of neurodegenerative disorders have been linked directly to the accumulation of amyloid fibres. These fibres are made up of proteins or peptides with altered structures and which join together in vivo in association with heparan sulphate-type polysaccharides. AIMS. To examine the most recent concepts in the biology of heparan sulphates and their role in the aggregation of the peptide Abeta, of tau protein, of alpha-synuclein and of prions. The study also seeks to analyse their implications in neurodegenerative disorders such as Alzheimers and Parkinson’s disease and prion diseases. Development. In vitro, heparan sulphates have played an important role in the process of oligomerisation and fibrillation of amyloidogenic proteins or peptides, in the stabilisation of these bodies and their resistance to proteolysis, thereby participating in the formation of a wide range of amyloid fibres. Heparan sulphates have also been related to the internalisation of pro-amyloid fibres during the process of intercellular propagation (spreading), which is considered to be crucial in the development of proteinopathies, the best example of which is Alzheimers disease. Conclusion This study suggests that the fine structures of heparan sulphates, their localisation in cells and tissues, together with their local concentration, may regulate the amyloidosis processes. The advances made in the understanding of this area of glyconeurobiology will make it possible to improve the understanding of the cell and molecular mechanisms underlying the neurodegenerative process (AU)


Assuntos
Humanos , Heparitina Sulfato/farmacocinética , Amiloidose/fisiopatologia , Doença de Parkinson/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Priônicas/fisiopatologia , Doença de Alzheimer/fisiopatologia , Agregação Patológica de Proteínas/fisiopatologia , Glicosaminoglicanos/farmacocinética , Proteínas tau/fisiologia , alfa-Sinucleína/fisiologia
5.
Sci Rep ; 7: 41755, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28155912

RESUMO

Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different ß-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug.


Assuntos
Doxiciclina/farmacologia , Reposicionamento de Medicamentos , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Doxiciclina/uso terapêutico , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica em Folha beta , Multimerização Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Sinucleína/química
6.
J Biol Chem ; 289(20): 13838-50, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24671416

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/farmacologia , Heparina/farmacologia , Multimerização Proteica/efeitos dos fármacos , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Estrutura Secundária de Proteína
7.
J Biol Chem ; 287(4): 2398-409, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22134915

RESUMO

Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of α-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote α-synuclein aggregation. Taking into account the toxicity of α-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.


Assuntos
Amiloide/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Heparina/química , Multimerização Proteica , alfa-Sinucleína/química , Amiloide/metabolismo , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Doença de Parkinson/metabolismo , Coelhos , alfa-Sinucleína/metabolismo
8.
Curr Protein Pept Sci ; 12(3): 166-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21348838

RESUMO

Even though our knowledge of how proteins misfold and aggregate is deeper nowadays, the mechanisms driving this process are still poorly understood. Among the factors involved, membranes should be taken into account. Indeed, convincing evidence suggests that membranes may influence protein folding, misfolding and aggregation. In fact, membrane lipid composition of different cellular types may attenuate or intensify the environmental pressure over protein folding equilibrium. In the present review the aim is to make an up-to-date analysis of the membrane influence on protein aggregation from a biophysical point of view in order to provide useful tools for researchers from other fields. In particular, we discuss how membranes can alter protein environment, e.g. increasing local protein concentration, lowering pH and dielectric constant, allowing accessibility to the hydrophobic milieu and promoting surface crowding, all of which will lead to protein aggregation. In addition, we review the role that specific lipids may exert on protein aggregation and finally we analyse the possible implication of membrane-related oxidative stress on amyloidogenesis.


Assuntos
Amiloide/metabolismo , Membrana Celular/fisiologia , Modelos Biológicos , Biofísica , Membrana Celular/patologia , Humanos , Estresse Oxidativo , Deficiências na Proteostase/fisiopatologia , Termodinâmica
9.
Biochem Biophys Res Commun ; 406(3): 366-70, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329661

RESUMO

Microcin J25 (MccJ25) is a 21 amino acid lasso-peptide antibiotic produced by Escherichia coli and composed of an 8-residues ring and a terminal 'tail' passing through the ring. We have previously reported two cellular targets for this antibiotic, bacterial RNA polymerase and the membrane respiratory chain, and shown that Tyr9 is essential for the effect on the membrane respiratory chain which leads to superoxide overproduction. In the present paper we investigated the redox behavior of MccJ25 and the mutant MccJ25 (Y9F). Cyclic voltammetry measurements showed irreversible oxidation of both Tyr9 and Tyr20 in MccJ25, but infrared spectroscopy studies demonstrated that only Tyr9 could be deprotonated upon chemical oxidation in solution. Formation of a long-lived tyrosyl radical in the native MccJ25 oxidized by H2O2 was demonstrated by Electron Paramagnetic Resonance Spectroscopy; this radical was not detected when the reaction was carried out with the MccJ25 (Y9F) mutant. These results show that the essential Tyr9, but not Tyr20, can be easily oxidized and form a tyrosyl radical.


Assuntos
Antibacterianos/química , Bacteriocinas/química , Tirosina/química , Espectroscopia de Ressonância de Spin Eletrônica , Ferricianetos , Peróxido de Hidrogênio/química , Oxirredução , Espectrofotometria Infravermelho , Vibração
10.
FEBS Lett ; 584(3): 625-30, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20006611

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme related with Huntington's, Parkinson's and Alzheimer's diseases. The ability of negatively charged membranes to induce a rapid formation of GAPDH amyloid fibrils has been demonstrated, but the mechanisms by which GAPDH reaches the fibrillar state remains unclear. In this report, we describe the structural changes undergone by GAPDH at physiological pH and temperature conditions right from its interaction with acidic membranes until the amyloid fibril is formed. According to our results, the GAPDH-membrane binding induces a beta-structuring process along with a loss of quaternary structure in the enzyme. In this way, experimental evidences on the initial steps of GAPDH amyloid fibrils formation pathway are provided.


Assuntos
Amiloide/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Membranas Artificiais , Amiloide/ultraestrutura , Gliceraldeído-3-Fosfato Desidrogenases/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Multimerização Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Eur Biophys J ; 38(7): 857-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19381627

RESUMO

Inhibition or reversion of protein self-aggregation has been suggested as a possible preventive mechanism against amyloid diseases, and many efforts are underway to found out molecules capable to restrain the protein aggregation process. In this paper, the inhibitory effects of thyroid hormone analogues on heat-induced fibrillation process of serum albumin are reported. Among the analogues tested, 3,5,3',5'-tetraiodothyroacetic and 3,5,3'-triiodothyroacetic acid showed the most important inhibitory effects on amyloid formation. Thyroxine exhibits a lesser protective effect, while 3,5,3'-triiodothyronine showed no significant inhibition. The gaining of a negative charge together with a size reduction of the hormone molecule could play an essential role in the inhibition of fibrils formation. According to infrared spectroscopy results, the thyroid hormones analogues protective effects proceed via the stabilization of the protein native structure. The current work demonstrates the effectiveness of naturally occurring molecules in the inhibition of albumin fibril formation.


Assuntos
Albumina Sérica/metabolismo , Tiroxina/análogos & derivados , Tri-Iodotironina/análogos & derivados , Amiloide/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Temperatura Alta , Cinética , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Albumina Sérica/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia
12.
Arch Biochem Biophys ; 405(1): 87-94, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12176061

RESUMO

NADH dehydrogenase-2 (NDH-2) from Escherichia coli is a membrane-bound flavoprotein linked to the respiratory chain. We have previously shown that this enzyme has cupric reductase activity that is involved in hydroperoxide-induced oxidative stress. In this paper we present spectroscopic evidence that NDH-2 contains thiolate-bound Cu(I) with luminescence properties. Purified NDH-2 exhibits an emission band at 670nm with excitation wavelengths of 280 and 580nm. This emission is quenched by the specific Cu(I) chelator bathocuproine disulfonate, but not by EDTA. The luminescence intensity is sensitive to the enzyme substrates and, thus, the Cu(I)-thiolate chromophore reflects the redox and/or conformational states of the protein. There is one copper atom per polypeptide chain of the purified NDH-2, as determined by atomic absorption spectroscopy. Bioinformatics allowed us to recognize a putative copper-binding site and to predict four structural/functional domains in NDH-2: (I) the FAD-binding domain, (II) the NAD(H)-binding domain, (III) the copper-binding domain, and (IV) the domain of anchorage to the membrane containing two transmembrane helices, at the C-terminus. A NDH-2 topology model, based on the secondary structure prediction, is proposed. This is the first description of a copper-containing NADH dehydrogenase. Comparative sequence analysis allowed us to identify a branch of homologous dehydrogenases that bear a similar metal-binding motif.


Assuntos
Cobre/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Citoplasma/metabolismo , Transporte de Elétrons , Escherichia coli/enzimologia , Modelos Genéticos , Dados de Sequência Molecular , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Estresse Oxidativo , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrofotometria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...