Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 109(7): 948-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25411001

RESUMO

The molecular basis of Plasmodium vivax chloroquine (CQ) resistance is still unknown. Elucidating the molecular background of parasites that are sensitive or resistant to CQ will help to identify and monitor the spread of resistance. By genotyping a panel of molecular markers, we demonstrate a similar genetic variability between in vitro CQ-resistant and sensitive phenotypes of P. vivax parasites. However, our studies identified two loci (MS8 and MSP1-B10) that could be used to discriminate between both CQ-susceptible phenotypes among P. vivax isolates in vitro. These preliminary data suggest that microsatellites may be used to identify and to monitor the spread of P. vivax-resistance around the world.


Assuntos
Cloroquina/farmacologia , DNA de Protozoário/isolamento & purificação , Resistência a Medicamentos/genética , Variação Genética , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Brasil/epidemiologia , Doenças Endêmicas/estatística & dados numéricos , Marcadores Genéticos , Humanos , Malária Vivax/sangue , Malária Vivax/epidemiologia , Testes de Sensibilidade Parasitária , Fenótipo , Reação em Cadeia da Polimerase , Distribuição Aleatória
2.
Mem. Inst. Oswaldo Cruz ; 109(7): 948-951, 11/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-728801

RESUMO

The molecular basis of Plasmodium vivax chloroquine (CQ) resistance is still unknown. Elucidating the molecular background of parasites that are sensitive or resistant to CQ will help to identify and monitor the spread of resistance. By genotyping a panel of molecular markers, we demonstrate a similar genetic variability between in vitro CQ-resistant and sensitive phenotypes of P. vivax parasites. However, our studies identified two loci (MS8 and MSP1-B10) that could be used to discriminate between both CQ-susceptible phenotypes among P. vivax isolates in vitro. These preliminary data suggest that microsatellites may be used to identify and to monitor the spread of P. vivax-resistance around the world.


Assuntos
Humanos , Cloroquina/farmacologia , DNA de Protozoário/isolamento & purificação , Resistência a Medicamentos/genética , Variação Genética , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Brasil/epidemiologia , Doenças Endêmicas/estatística & dados numéricos , Marcadores Genéticos , Malária Vivax/sangue , Malária Vivax/epidemiologia , Testes de Sensibilidade Parasitária , Fenótipo , Reação em Cadeia da Polimerase , Distribuição Aleatória
3.
Malar J ; 12: 281, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23937727

RESUMO

BACKGROUND: The emergence and spread of Plasmodium falciparum and Plasmodium vivax resistance to available anti-malarial drugs represents a major drawback in the control of malaria and its associated morbidity and mortality. The aim of this study was to evaluate the chemoresistance profile of P. falciparum and P. vivax to commonly used anti-plasmodial drugs in a malaria-endemic area in the Brazilian Amazon. METHODS: The study was carried out in Manaus (Amazonas state), in the Brazilian Amazon. A total of 88 P. falciparum and 178 P. vivax isolates was collected from 2004 to 2007. The sensitivity of P. falciparum isolates was determined to chloroquine, quinine, mefloquine and artesunate and the sensitivity of P. vivax isolates was determined to chloroquine and mefloquine, by using the colorimetric DELI test. RESULTS: As expected, a high prevalence of P. falciparum isolates resistant to chloroquine (78.1%) was observed. The prevalence of isolates with profile of resistance or decreased sensitivity for quinine, mefloquine and artesunate was 12.7, 21.2 and 11.7%, respectively. In the case of P. vivax, the prevalence of isolates with profile of resistance for chloroquine and mefloquine was 9.8 and 28%, respectively. No differences in the frequencies of isolates with profile of resistance or geometric mean IC50s were seen when comparing the data obtained in 2004, 2005, 2006 and 2007, for all tested anti-malarials. CONCLUSIONS: The great majority of P. falciparum isolates in the Brazilian malaria-endemic area remain resistant to chloroquine, and the decreased sensitivity to quinine, mefloquine and artesunate observed in 10-20% of the isolates must be taken with concern, especially for artesunate. Plasmodium vivax isolates also showed a significant proportion of isolates with decreased sensitivity to chloroquine (first-line drug) and mainly to mefloquine. The data presented here also confirm the usefulness of the DELI test to generate results able to impact on public health policies.


Assuntos
Antimaláricos/farmacologia , Colorimetria , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/isolamento & purificação , Adulto , Brasil , Resistência a Medicamentos , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Testes de Sensibilidade Parasitária , Prevalência , Adulto Jovem
4.
Malar J ; 12: 226, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23819884

RESUMO

BACKGROUND: Chloroquine (CQ) and primaquine (PQ) are still the drugs of choice to treat Plasmodium vivax malaria in many endemic areas, Brazil included. There is in vivo evidence for the P. vivax resistance to CQ in the Brazilian Amazon, where the increase in the proportion of P. vivax malaria parallels the increase of unusual clinical complications related to this species. In this study, in vitro CQ and mefloquine (MQ)-susceptibility of P. vivax isolates from the Western Brazilian Amazon was tested using the double-site enzyme-linked lactate dehydrogenase immunodetection (DELI) assay. METHODS: A total of 112 P. vivax isolates were tested in vitro for CQ-susceptibility and out of these 47 were also tested for MQ-susceptibility. The DELI assay was used to detect P. vivax growth at 48-hour short-term culture in isolates with ring stages ranging from 50 to %. Each isolate was tested in triplicate and geometric means of IC50's was obtained. Nineteen isolates were genetically characterized for pvdhfr, pvmrp1, pvmdr1 and pvdhps candidate genes likely related to CQ resistance (10 with IC50<40 nM and 9 with IC50 >100 nM). RESULTS: Twelve out of 112 isolates were considered resistant to CQ, resulting in 10.7% (IC95% 5.0-16.4), while 3 out of 47 (6.4%; IC95% 0.0-12.8) were resistant to MQ. A discrete correlation was observed between IC50's of CQ and MQ (Spearman=0.294; p=0.045). For pvdhps gene, a non-synonymous mutation was found at codon 382 (S→C) in 5/8 CQ-sensitive samples and 1/9 CQ-resistant samples (p=0.027). The other molecular markers were not associated to CQ-susceptibility. CONCLUSIONS: In vitro CQ-resistance estimated in this study, estimated by the DELI test, was very similar to that observed in clinical trials, suggesting that in vitro procedures developed by capable local laboratories are useful in the surveillance of CQ-resistance in the Amazon; concurrent Amazon P. vivax strains with both CQ and MQ resistance may be common; and a non-synonymous mutation at pvdhps codon 382 (S→C) was associated to in vitro susceptibility to CQ, needing further studies to be confirmed.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Malária Vivax/parasitologia , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Brasil , Sobrevivência Celular/efeitos dos fármacos , Criança , Feminino , Humanos , Concentração Inibidora 50 , L-Lactato Desidrogenase/análise , Masculino , Mefloquina/farmacologia , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Testes de Sensibilidade Parasitária , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/fisiologia , Proteínas de Protozoários/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...