Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 126(43): 18490-18504, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366759

RESUMO

The effects of anionic site substitution on the electronic transport properties of Yb14MgSb11-x As x compounds were investigated using density functional theory (DFT) with on-site Coulomb interaction correction (PBE+U). By replacing the Sb atoms at the four symmetry sites in Yb14MgSb11 with As, we found that the electronic and thermoelectric properties of the compound can be altered substantially. For most of the cases, the thermoelectric properties improve compared to the base compound Yb14MgSb11. Substitution at the tetrahedral site (Sb2) in particular yields the highest improvement in the thermoelectric properties. Detailed insight into the electronic and structural changes caused by the selective site substitutions is also discussed.

2.
ACS Appl Mater Interfaces ; 14(38): 43517-43526, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36123322

RESUMO

Rare-earth chalcogenides Re3-xCh4 (Re = La, Pr, Nd, Ch = S, Se, and Te) have been extensively studied as high-temperature thermoelectric (TE) materials owing to their low lattice thermal conductivity (κL) and tunable electron carrier concentration via cation vacancies. In this work, we introduce Y2Te3, a rare-earth chalcogenide with a rocksalt-like vacancy-ordered structure, as a promising n-type TE material. We computationally evaluate the transport properties, optimized TE performance, and doping characteristics of Y2Te3. Combined with a low κL, multiple low-lying conduction band valleys yield a high n-type TE quality factor. We find that a maximum figure of merit zT > 1 can be achieved when Y2Te3 is optimally doped to an electron concentration of 1-2 × 1020 cm-3. We use defect calculations to show that Y2Te3 is n-type dopable under Y-rich growth conditions, which suppress the formation of acceptor-like cation vacancies. Furthermore, we propose that optimal n-type doping can be achieved with halogens (Cl, Br, and I), with I being the most effective dopant. Our computational results as well as experimental results reported elsewhere motivate further optimization of Y2Te3 as an n-type TE material.

3.
Materials (Basel) ; 12(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836595

RESUMO

Rare-earth (RE) tellurides have been studied extensively for use in high-temperature thermoelectric applications. Specifically, lanthanum and praseodymium-based compounds with the Th3P4 structure type have demonstrated dimensionless thermoelectric figures of merit (zT) up to 1.7 at 1200 K. Scandium, while not part of the lanthanide series, is considered a RE element due to its chemical similarity. However, little is known about the thermoelectric properties of the tellurides of scandium. Here, we synthesized scandium sesquitelluride (Sc2Te3) using a mechanochemical approach and formed sintered compacts through spark plasma sintering (SPS). Temperature-dependent thermoelectric properties were measured from 300⁻1100 K. Sc2Te3 exhibited a peak zT = 0.3 over the broad range of 500⁻750 K due to an appreciable power factor and low-lattice thermal conductivity in the mid-temperature range.

4.
Chem Mater ; 31(12): 4460-4468, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31942089

RESUMO

Thermoelectric materials exhibit a voltage under an applied thermal gradient and are the heart of radioisotope thermoelectric generators (RTGs), which are the main power system for space missions such as Voyager I, Voyager II, and the Mars Curiosity rover. However, materials currently in use enable only modest thermal-to-electrical conversion efficiencies near 6.5% at the system level, warranting the development of material systems with improved thermoelectric performance. Previous work has demonstrated large thermoelectric figures of merit for lanthanum telluride (La3-x Te4), a high-temperature n-type material, achieving a peak zT value of 1.1 at 1275 K at an optimum cation vacancy concentration. Here we present an investigation of the thermoelectric properties of neodymium telluride (Nd3-x Te4), another rare-earth telluride with a similar structure to La3-x Te4. Density functional theory (DFT) calculations predicted a significant increase in the Seebeck coefficient over La3-x Te4 at equivalent vacancy concentrations due to an increased density of states (DOS) near the Fermi level from the 4f electrons of Nd. The high temperature electrical resistivity, Seebeck coefficient, and thermal conductivity were measured for Nd3-x Te4 at various carrier concentrations. These measurements were compared to La3-x Te4 in order to elucidate the impact of the four 4f electrons of Nd on the transport properties of Nd3-x Te4. A zT of 1.2 was achieved at 1273 K for Nd2.78Te4, which is a 10% improvement over that of La2.74Te4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...