Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1424: 49-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486478

RESUMO

There is strong evidence that the pathological findings of Alzheimer's disease (AD), consisting of accumulated amyloid plaques and neurofibrillary tangles, could spread around the brain through synapses and neural connections of neighboring brain sections. Graph theory is a helpful tool in depicting the complex human brain divided into various regions of interest (ROIs) and the connections among them. Thus, applying graph theory-based models in the study of brain connectivity comes natural in the study of AD propagation mechanisms. Moreover, graph theory-based computational approaches have been lately applied in order to boost data-driven analysis, extract model measures and robustness-effectiveness indexes, and provide insights on casual interactions between regions of interest (ROI), as imposed by the models' architecture.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Emaranhados Neurofibrilares/patologia
2.
Adv Exp Med Biol ; 1423: 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525028

RESUMO

The clinical pathology of neurodegenerative diseases suggests that earlier onset and progression are related to the accumulation of protein aggregates due to misfolding. A prominent way to extract useful information regarding single-molecule studies of protein misfolding at the nanoscale is by capturing the unbinding molecular forces through forced mechanical tension generated and monitored by an atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). This AFM-driven process results in an amount of data in the form of force versus molecular extension plots (force-distance curves), the statistical analysis of which can provide insights into the underlying energy landscape and assess a number of characteristic elastic and kinetic molecular parameters of the investigated sample. This chapter outlines the setup of a bio-AFM-based SMFS technique for single-molecule probing. The infrastructure used as a reference for this presentation is the Bruker ForceRobot300.


Assuntos
Doenças Neurodegenerativas , Humanos , Proteínas/química , Microscopia de Força Atômica/métodos , Nanotecnologia , Imagem Individual de Molécula
3.
Adv Exp Med Biol ; 1339: 187-193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023106

RESUMO

Single molecule force spectroscopy (SMFS) has emerged since the past few years as a prominent set of techniques, within the broader field of atomic force microscopy (AFM), for the study of interactions and binding forces of individual protein molecules. Since force spectroscopy measures the behavior of a molecule when stretching or torsional mechanical force is applied, it can be an excellent tool in the hands of researchers who study protein folding and misfolding mechanisms, by reverse engineering the forced unfolding. Such studies could be of crucial importance in the field of protein-related diseases. In this review we wish to provide a glimpse at SMFS concept and recent advances, paired with the protein misfolding issue in neurodegenerative diseases.


Assuntos
Dobramento de Proteína , Imagem Individual de Molécula , Microscopia de Força Atômica , Domínios Proteicos , Desdobramento de Proteína , Análise Espectral
4.
Adv Exp Med Biol ; 1194: 115-125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468528

RESUMO

Computer-aided drug design (CADD) is the framework in which the huge amount of data accumulated by high-throughput experimental methods used in drug design is quantitatively studied. Its objectives include pattern recognition, biomarker identification and/or classification, etc. In order to achieve these objectives, machine learning algorithms and especially artificial neural networks (ANNs) have been used over ADMET factor testing and QSAR modeling evaluation. This paper provides an overview of the current trends in CADD-applied ANNs, since their use was re-boosted over a decade ago.


Assuntos
Algoritmos , Química Farmacêutica , Desenho de Fármacos , Redes Neurais de Computação , Química Farmacêutica/métodos , Química Farmacêutica/tendências , Computadores , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...