Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392703

RESUMO

A new functional Fe-30Mn-5Si-xCu (x = 1.5 and 2 wt%) biomaterial was obtained from the levitation induction melting process and evaluated as a biodegradable material. The degradation characteristics were assessed in vitro using immersion tests in simulated body fluid (SBF) at 37 ± 1 °C, evaluating mass loss, pH variation that occurred in the solution, open circuit potential (OCP), linear and cyclic potentiometry (LP and CP), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and nano-FTIR. To obtain plates as samples, the cast materials were thermo-mechanically processed by hot rolling. Dynamic mechanical analysis (DMA) was employed to evaluate the thermal properties of the smart material. Atomic force microscopy (AFM) was used to show the nanometric and microstructural changes during the hot rolling process and DMA solicitations. The type of corrosion identified was generalized corrosion, and over the first 3-5 days, an increase in mass was observed, caused by the compounds formed at the metal-solution interface. The formed compounds were identified mainly as oxides that passed into the immersion liquid. The degradation rate (DR) was obtained as a function of mass loss, sample surface area and immersion duration. The dynamic mechanical behavior and dimensions of the sample were evaluated after 14 days of immersion. The nanocompounds found on the surface after atmospheric corrosion and immersion in SBF were investigated with the Neaspec system using the nano-FTIR technique.

2.
Materials (Basel) ; 14(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066121

RESUMO

Zinc biodegradable alloys attracted an increased interest in the last few years in the medical field among Mg and Fe-based materials. Knowing that the Mg element has a strengthening influence on Zn alloys, we analyze the effect of the third element, namely, Y with expected results in mechanical properties improvement. Ternary ZnMgY samples were obtained through induction melting in Argon atmosphere from high purity (Zn, Mg, and Y) materials and MgY (70/30 wt%) master alloys with different percentages of Y and keeping the same percentage of Mg (3 wt%). The corrosion resistance and microhardness of ZnMgY alloys were compared with those of pure Zn and ZnMg binary alloy. Materials were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), linear and cyclic potentiometry, and immersion tests. All samples present generalized corrosion after immersion and electro-corrosion experiments in Dulbecco solution. The experimental results show an increase in microhardness and indentation Young Modulus following the addition of Y. The formation of YZn12 intermetallic phase elements with a more noble potential than pure Zinc is established. A correlation is obtained between the appearance of new Y phases and aggressive galvanic corrosion.

3.
Materials (Basel) ; 13(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664267

RESUMO

In recent years, biodegradable Mg-based materials have been increasingly studied to be used in the medical industry and beyond. A way to improve biodegradability rate in sync with the healing process of the natural human bone is to alloy Mg with other biocompatible elements. The aim of this research was to improve biodegradability rate and biocompatibility of Mg-0.5Ca alloy through addition of Y in 0.5/1.0/1.5/2.0/3.0wt.%. To characterize the chemical composition and microstructure of experimental Mg alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), light microscopy (LM), and X-ray diffraction (XRD) were used. The linear polarization resistance (LPR) method was used to calculate corrosion rate as a measure of biodegradability rate. The cytocompatibility was evaluated by MTT assay (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) and fluorescence microscopy. Depending on chemical composition, the dendritic α-Mg solid solution, as well as lamellar Mg2Ca and Mg24Y5 intermetallic compounds were found. The lower biodegradability rates were found for Mg-0.5Ca-2.0Y and Mg-0.5Ca-3.0Y which have correlated with values of cell viability. The addition of 2-3 wt.%Y in the Mg-0.5Ca alloy improved both the biodegradability rate and cytocompatibility behavior.

4.
J Mater Sci Mater Med ; 21(11): 2907-13, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20711847

RESUMO

To evaluate the potential of ß-Ti20Mo alloy as a dental material, we tested its corrosion behaviour in artificial saliva in comparison to that of cp-Ti. Open-circuit potential (E(OC)), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used as electrochemical methods to characterize the corrosion behaviour of Ti20Mo alloy and cp-Ti, respectively. Corrosion current and passive current densities obtained from the polarization curves showed low values indicating a typical passive behaviour for Ti20Mo alloy. The EIS technique enabled us to study the nature of the passive film formed on the binary Ti20Mo alloy at various imposed potentials. The Bode phase spectra obtained for Ti20Mo alloy in artificial saliva exhibited two-time constants at higher potential (0.5 V, 1.0 V), indicating a two-layer structure. According to our experimental measurements, Ti20Mo alloy appears to possess superior corrosion resistance to that of cp-Ti in artificial saliva.


Assuntos
Ligas/química , Saliva Artificial/farmacologia , Ligas/farmacocinética , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Corrosão , Ligas Dentárias/química , Espectroscopia Dielétrica , Eletroquímica/métodos , Teste de Materiais , Modelos Biológicos , Potenciometria/métodos , Titânio/química , Titânio/farmacocinética
5.
Acta Biomater ; 5(9): 3625-39, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19508903

RESUMO

Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biocompatibility of metallic materials, and can produce undesirable reactions in implant-adjacent and/or more distant tissues. Titanium and some of its alloys are known as being the most biocompatible metallic materials due to their high strength, low modulus, high corrosion resistance in biological media, etc. More recently, Ti-Ta alloys have been developed, and these are expected to become more promising candidates for biomedical and dental applications than commercially pure Ti, Ti-6Al-4V or Ti-6Al-7Nb alloy. The corrosion behavior of the studied Ti-Ta alloys with Ta contents of 30, 40, 50 and 60 wt.% together with the currently used Ti-6Al-7Nb alloy were investigated for dental applications. All alloys were tested by open-circuit potential measurement, linear polarization, potentiodynamic polarization, coulometric zone analysis and electrochemical impedance spectroscopy performed in artificial saliva with different pH, acid lactic and fluoride contents. The passive behavior for all the titanium alloys is observed for artificial saliva, acidified saliva (9.8 gl(-1) lactic acid, pH 2.5) and for fluoridated saliva (1.0 gl(-1) F(-), pH 8). A decrease in corrosion resistance and less protective passive oxide films are observed for all titanium alloys in fluoridated acidified saliva (9.8 gl(-1) lactic acid, 1.0 gl(-1) F(-), pH 2.5) in regard to other electrochemical media used within this work. It is worthy of note that the most important decrease was found for Ti-6Al-7Nb alloy. These conclusions are confirmed by all the electrochemical tests undertaken. However, the results confirm that the corrosion resistance of the studied Ti-Ta alloys in all saliva is better or similar to that of Ti-6Al-7Nb alloy, suggesting that the Ti-Ta alloys have potential for dental applications.


Assuntos
Ligas Dentárias/química , Titânio/química , Ligas , Materiais Biocompatíveis/química , Corrosão , Técnicas Eletroquímicas , Fluoretos/química , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Saliva Artificial/química , Análise Espectral/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA