Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35802137

RESUMO

Ionizing radiations (IR) alter hematopoietic stem cell (HSC) function on the long term, but the mechanisms underlying these effects are still poorly understood. We recently showed that IR induces the derepression of L1Md, the mouse young subfamilies of LINE-1/L1 retroelements. L1 contributes to gene regulatory networks. However, how L1Md are derepressed and impact HSC gene expression are not known. Here, we show that IR triggers genome-wide H3K9me3 decrease that occurs mainly at L1Md. Loss of H3K9me3 at intronic L1Md harboring NF-κB binding sites motifs but not at promoters is associated with the repression of HSC-specific genes. This is correlated with reduced NFKB1 repressor expression. TNF-α treatment rescued all these effects and prevented IR-induced HSC loss of function in vivo. This TNF-α/NF-κB/H3K9me3/L1Md axis might be important to maintain HSCs while allowing expression of immune genes during myeloid regeneration or damage-induced bone marrow ablation.


Assuntos
Células-Tronco Hematopoéticas , Histonas , Elementos Nucleotídeos Longos e Dispersos , NF-kappa B , Fator de Necrose Tumoral alfa , Animais , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Camundongos , NF-kappa B/metabolismo , Radiação Ionizante , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
2.
Cancer Lett ; 543: 215765, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35680072

RESUMO

Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.


Assuntos
Neoplasias das Glândulas Suprarrenais , Medula Suprarrenal , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/metabolismo , Medula Suprarrenal/metabolismo , Cálcio , Cálcio da Dieta , Catecolaminas/metabolismo , Exocitose , Humanos , Feocromocitoma/metabolismo
3.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393954

RESUMO

Mutation of the TET2 DNA-hydroxymethylase has been associated with a number of immune pathologies. The disparity in phenotype and clinical presentation among these pathologies leads to questions regarding the role of TET2 mutation in promoting disease evolution in different immune cell types. Here we show that, in primary mast cells, Tet2 expression is induced in response to chronic and acute activation signals. In TET2-deficient mast cells, chronic activation via the oncogenic KITD816V allele associated with mastocytosis, selects for a specific epigenetic signature characterized by hypermethylated DNA regions (HMR) at immune response genes. H3K27ac and transcription factor binding is consistent with priming or more open chromatin at both HMR and non-HMR in proximity to immune genes in these cells, and this signature coincides with increased pathological inflammation signals. HMR are also associated with a subset of immune genes that are direct targets of TET2 and repressed in TET2-deficient cells. Repression of these genes results in immune tolerance to acute stimulation that can be rescued with vitamin C treatment or reiterated with a Tet inhibitor. Overall, our data support a model where TET2 plays a direct role in preventing immune tolerance in chronically activated mast cells, supporting TET2 as a viable target to reprogram the innate immune response for innovative therapies.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Tolerância Imunológica , Mastócitos , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Mastócitos/imunologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
4.
Blood ; 138(17): 1590-1602, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33974006

RESUMO

Systemic mastocytosis (SM) is a KIT-driven hematopoietic neoplasm characterized by the excessive accumulation of neoplastic mast cells (MCs) in various organs and, mainly, the bone marrow (BM). Multiple genetic and epigenetic mechanisms contribute to the onset and severity of SM. However, little is known to date about the metabolic underpinnings underlying SM aggressiveness, which has thus far impeded the development of strategies to leverage metabolic dependencies when existing KIT-targeted treatments fail. Here, we show that plasma metabolomic profiles were able to discriminate indolent from advanced forms of the disease. We identified N-acetyl-d-glucosamine (GlcNAc) as the most predictive metabolite of SM severity. High plasma levels of GlcNAc in patients with advanced SM correlated with the activation of the GlcNAc-fed hexosamine biosynthesis pathway in patients BM aspirates and purified BM MCs. At the functional level, GlcNAc enhanced human neoplastic MCs proliferation and promoted rapid health deterioration in a humanized mouse model of SM. In addition, in the presence of GlcNAc, immunoglobulin E-stimulated MCs triggered enhanced release of proinflammatory cytokines and a stronger acute response in a mouse model of passive cutaneous anaphylaxis. Mechanistically, elevated GlcNAc levels promoted the transcriptional accessibility of chromatin regions that contain genes encoding mediators of receptor tyrosine kinases cascades and inflammatory responses, thus leading to a more aggressive phenotype. Therefore, GlcNAc is an oncometabolite driver of SM aggressiveness. This study suggests the therapeutic potential for targeting metabolic pathways in MC-related diseases to manipulate MCs effector functions.


Assuntos
Acetilglucosamina/análise , Montagem e Desmontagem da Cromatina , Mastócitos/patologia , Mastocitose Sistêmica/patologia , Acetilglucosamina/metabolismo , Adulto , Animais , Progressão da Doença , Humanos , Mastócitos/metabolismo , Mastocitose Sistêmica/genética , Mastocitose Sistêmica/metabolismo , Metaboloma , Camundongos SCID , Estudos Prospectivos
5.
Nat Immunol ; 21(9): 983-997, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690951

RESUMO

Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN-I). What other functions pDCs exert in vivo during viral infections is controversial, and more studies are needed to understand their orchestration. In the present study, we characterize in depth and link pDC activation states in animals infected by mouse cytomegalovirus by combining Ifnb1 reporter mice with flow cytometry, single-cell RNA sequencing, confocal microscopy and a cognate CD4 T cell activation assay. We show that IFN-I production and T cell activation were performed by the same pDC, but these occurred sequentially in time and in different micro-anatomical locations. In addition, we show that pDC commitment to IFN-I production was marked early on by their downregulation of leukemia inhibitory factor receptor and was promoted by cell-intrinsic tumor necrosis factor signaling. We propose a new model for how individual pDCs are endowed to exert different functions in vivo during a viral infection, in a manner tightly orchestrated in time and space.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Infecções por Herpesviridae/imunologia , Muromegalovirus/fisiologia , Animais , Células Cultivadas , Interferon Tipo I/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator de Necrose Tumoral alfa/metabolismo
6.
Semin Cell Dev Biol ; 86: 24-35, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444460

RESUMO

Plasmacytoid pre-dendritic cells (pDC) are a specialized DC population with a great potential to produce large amounts of type I interferon (IFN). pDC are involved in the initiation of antiviral immune responses through their interaction with innate and adaptive immune cell populations. In a context-dependent manner, pDC activation can induce their differentiation into mature DC able to induce both T cell activation or tolerance. In this review, we described pDC functions during immune responses and their implication in the clearance or pathogenicity of human diseases during infection, autoimmunity, allergy and cancer. We discuss recent advances in the field of pDC biology and their implication for future studies.


Assuntos
Doenças Autoimunes/imunologia , Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Doenças Autoimunes/terapia , Humanos , Hipersensibilidade/terapia , Imunoterapia
7.
EMBO J ; 37(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30131424

RESUMO

Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.


Assuntos
Células Dendríticas/imunologia , Infecções por Herpesviridae/imunologia , Interferon Tipo I/imunologia , Muromegalovirus/imunologia , Transdução de Sinais/imunologia , Complexo 3 de Proteínas Adaptadoras/genética , Complexo 3 de Proteínas Adaptadoras/imunologia , Animais , Células Dendríticas/patologia , Endossomos/genética , Endossomos/imunologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/genética , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia
8.
Immunity ; 45(2): 305-18, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533013

RESUMO

Dendritic cells (DCs) are instrumental in the initiation of T cell responses, but how thymic and peripheral tolerogenic DCs differ globally from Toll-like receptor (TLR)-induced immunogenic DCs remains unclear. Here, we show that thymic XCR1(+) DCs undergo a high rate of maturation, accompanied by profound gene-expression changes that are essential for central tolerance and also happen in germ-free mice. Those changes largely overlap those occurring during tolerogenic and, more unexpectedly, TLR-induced maturation of peripheral XCR1(+) DCs, arguing against the commonly held view that tolerogenic DCs undergo incomplete maturation. Interferon-stimulated gene (ISG) expression was among the few discriminators of immunogenic and tolerogenic XCR1(+) DCs. Tolerogenic XCR1(+) thymic DCs were, however, unique in expressing ISGs known to restrain virus replication. Therefore, a broad functional convergence characterizes tolerogenic and immunogenic XCR1(+) DC maturation in the thymus and periphery, maximizing antigen presentation and signal delivery to developing and to conventional and regulatory mature T cells.


Assuntos
Tolerância Central , Células Dendríticas/imunologia , Tolerância Periférica , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Diferenciação Celular , Células Cultivadas , Fatores Reguladores de Interferon/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Receptores Toll-Like/imunologia , Transcriptoma , Replicação Viral
9.
J Immunol Methods ; 432: 35-49, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26966045

RESUMO

Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1(+) DCs, and between mouse and human Langerhans cells.


Assuntos
Diferenciação Celular/genética , Células Dendríticas , Genômica , Células de Langerhans/imunologia , Tecido Linfoide/imunologia , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/genética , Pele , Animais , Biologia Computacional , Bases de Dados Genéticas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células de Langerhans/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Camundongos , Fenótipo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Pele/citologia , Pele/imunologia , Pele/metabolismo , Especificidade da Espécie , Transcrição Gênica
10.
J Immunol ; 195(10): 4953-61, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466959

RESUMO

Psoriasis is a chronic inflammatory skin disease of unknown etiology. Previous studies showed that short-term, 5-7 d-long application of imiquimod (IMQ), a TLR7 agonist, to the skin of mice triggers a psoriasis-like inflammation. In the current study, by applying IMQ for 14 consecutive d, we established an improved mouse psoriasis-like model in that it recapitulated many of the clinical and cellular hallmarks observed in human patients during both the early-onset and the late-stable phase of psoriasis. Although macrophages and dendritic cells (DCs) have been proposed to drive the psoriatic cascade, their largely overlapping phenotype hampered studying their respective role. Based on our ability to discriminate Langerhans cells (LCs), conventional DCs, monocytes, monocyte-derived DCs, macrophages, and plasmacytoid DCs in the skin, we addressed their dynamics during both phases of our biphasic psoriasis-like model. Plasmacytoid DCs were not detectable during the whole course of IMQ treatment. During the early phase, neutrophils infiltrated the epidermis, whereas monocytes and monocyte-derived DCs were predominant in the dermis. During the late phase, LCs and macrophage numbers transiently increased in the epidermis and dermis, respectively. LC expansion resulted from local proliferation, a conclusion supported by global transcriptional analysis. Genetic depletion of LCs permitted to evaluate their function during both phases of the biphasic psoriasis-like model and demonstrated that their absence resulted in a late phase that is associated with enhanced neutrophil infiltration. Therefore, our data support an anti-inflammatory role of LCs during the course of psoriasis-like inflammation.


Assuntos
Aminoquinolinas/efeitos adversos , Células Dendríticas/imunologia , Macrófagos/imunologia , Psoríase/induzido quimicamente , Psoríase/imunologia , Pele/imunologia , Transcriptoma/efeitos dos fármacos , Aminoquinolinas/farmacologia , Animais , Células Dendríticas/patologia , Modelos Animais de Doenças , Humanos , Imiquimode , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Psoríase/patologia , Pele/patologia
11.
Hum Immunol ; 76(9): 644-50, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26407910

RESUMO

Natural killer cells (NK) are pivotal cells of innate immunity. They are potent antileukemic cytotoxic effectors. A defect in their cytotoxicity has been described in some hematopoietic malignancies such as acute myeloid leukemia, multiple myeloma and myelodysplastic syndromes. This defect is at least partially linked to a decreased or absent expression of some activating NK cells molecules, more particularly the so-called natural cytotoxicity receptors. In the present study, we more particularly focused our attention on NK cells of polycythemia vera, a myeloproliferative disease characterized by the presence of mutated JAK2 tyrosine kinase. The polymerase chain reaction analysis of NK cells from patients showed that they expressed the mutated form of JAK2. In polycythemia vera the proportion of NK was increased compared to healthy donors. The proliferative and cytotoxic abilities of NK cells from patients were similar to healthy donors. Expression of activating or inhibitory receptors was comparable in patients and donors, with nonetheless an imbalance for the inhibitory form of the CD158a,h couple of receptors in patients. Finally, the transcriptomic profile analysis clearly identified a discriminant signature between NK cells from patients and donors that could putatively be the consequence of abnormal continuous activation of mutated JAK2.


Assuntos
Células Matadoras Naturais/imunologia , Policitemia Vera/imunologia , Idoso , Antígenos de Superfície/metabolismo , Estudos de Casos e Controles , Análise por Conglomerados , Citotoxicidade Imunológica , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Janus Quinase 2/genética , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Policitemia Vera/metabolismo , Receptores de Células Matadoras Naturais/genética , Receptores de Células Matadoras Naturais/metabolismo
12.
J Immunol ; 193(4): 1622-35, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25009205

RESUMO

Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1(+) DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1(+) human DC. Assessment of the immunoactivation potential of XCR1(+) human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1(+) and XCR1(-) human DC in CD34(+) progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1(-) CD34-DC are similar to canonical MoDC, whereas XCR1(+) CD34-DC resemble XCR1(+) blood DC (bDC). XCR1(+) DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1(+) DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1(+) CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1(+) bDC. Hence, it is feasible to generate high numbers of bona fide XCR1(+) human DC in vitro as a model to decipher the functions of XCR1(+) bDC and as a potential source of XCR1(+) DC for clinical use.


Assuntos
Antígenos CD34/imunologia , Células Sanguíneas/imunologia , Células Dendríticas/imunologia , Monócitos/imunologia , Receptores Acoplados a Proteínas G/imunologia , Adjuvantes Imunológicos/farmacologia , Apresentação de Antígeno/imunologia , Técnicas de Cultura de Células , Diferenciação Celular/imunologia , Linhagem Celular , Apresentação Cruzada/imunologia , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde , Humanos , Imidazóis/imunologia , Células Matadoras Naturais/imunologia , Lipopolissacarídeos/imunologia , Fenótipo , Poli I-C/imunologia , Linfócitos T/imunologia , Receptor 3 Toll-Like , Receptor 4 Toll-Like
13.
EMBO J ; 33(10): 1104-16, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24737868

RESUMO

Dendritic cells (DC) are key regulators of both protective immune responses and tolerance to self-antigens. Soon after their discovery in lymphoid tissues by Steinman and Cohn, as cells with the unique ability to prime naïve antigen-specific T cells, it was realized that DC can exist in at least two distinctive states characterized by morphological, phenotypic and functional changes-this led to the description of DC maturation. It is now well appreciated that there are several subsets of DC in both lymphoid and non-lymphoid tissues of mammals, and these cells show remarkable functional specialization and specificity in their roles in tolerance and immunity. This review will focus on the specific characteristics of DC subsets and how their functional specialization may be regulated by distinctive gene expression programs and signaling responses in both steady-state and in the context of inflammation. In particular, we will highlight the common and distinctive genes and signaling pathways that are associated with the functional maturation of DC subsets.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Animais , Humanos , Tolerância Imunológica/imunologia , Tolerância Imunológica/fisiologia , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...