Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30509924

RESUMO

In coastal areas, intrusion/irrigation with seawater can threaten biodiversity along with crop yields, and the leaching of salts from areas affected by these processes can increase the salinity of water bodies nearby. The aims of this study were to evaluate the effects of salinization on coastal soil ecosystems due to saline intrusion/irrigation. Terrestrial model ecosystems were used to simulate two soil salinization scenarios: (i) seawater intrusion and irrigation with distilled water and (ii) seawater intrusion and irrigation with saline water. Three sampling periods were established: T0-after acclimation period; T1-salinization effects; and T2-populations' recovery. In each sampling period, the abundance of nematodes, enchytraeids, springtails, mites and earthworms, and plant biomass were measured. Immediate negative effects on enchytraeid abundance were detected, especially at the higher level of saltwater via intrusion+irrigation. Eight weeks after the cessation of saline irrigation, the abundance of enchytraeids fully recovered, and some delayed effects were observed in earthworm abundance and plant biomass, especially at the higher soil conductivity level. The observed low capacity of soil to retain salts suggests that, particularly at high soil conductivities, nearby freshwater bodies can also be endangered. Under saline conditions similar to the ones assayed, survival of some soil communities can be threatened, leading to the loss of biodiversity.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Assuntos
Invertebrados/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Salinidade , Sais/efeitos adversos , Água do Mar/efeitos adversos , Solo/química , Animais , Biomassa , Ecossistema , Invertebrados/fisiologia , Modelos Biológicos
2.
Chemosphere ; 181: 579-588, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28467951

RESUMO

The main goal of the present study was to evaluate the ecotoxicological effects of 1,4-naphthoquinone (1,4-NTQ), a natural-origin compound presenting nematicidal activity, that can be obtained from walnut husk, in plants and soil invertebrates, including non-target soil nematode communities. This research was part of an ongoing project that aims to develop environmentally-friendly nematicides obtained from agricultural residues. The battery of ISO tests included emergence and growth of corn (Zea mays) and rape (Brassica napus); avoidance with the earthworm Eisenia andrei and the collembolan Folsomia candida; and reproduction with the previous species plus the enchytraeid Enchytraeus crypticus. A novel soil nematode community assay was also performed. ISO tests and nematode assays were conducted using a natural uncontaminated soil that was spiked with a range of 1,4-NTQ concentrations. Toxicity of 1,4-NTQ was found for all test-species and the most sensitive were F. candida and E. andrei. After 7 days of exposure to 1,4-NTQ, nematode abundance decreased along the concentration gradient, and a partial recovery was observed after 14 days (1,4-NTQ <48 mg kg-1 soil). The number of nematode families consistently decreased in both periods. Overall, results indicate that a 1,4-NTQ concentration of <20 mg kg-1 could be environmentally safe but preliminary data suggest that it might be ineffective for the target-nematodes, root-knot nematodes, Meloidogyne spp., and root-lesion nematodes, Pratylenchus spp. In addition, if higher dosages of 1,4-NTQ bionematicide are necessary, the potential recovery of non-target organisms under real field scenarios also needs to be assessed.


Assuntos
Ecotoxicologia , Naftoquinonas/toxicidade , Poluentes do Solo/toxicidade , Agricultura , Animais , Antinematódeos/análise , Antinematódeos/toxicidade , Artrópodes/efeitos dos fármacos , Bioensaio , Oligoquetos/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise , Zea mays/efeitos dos fármacos
3.
Chemosphere ; 135: 116-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25930052

RESUMO

The increase of global mean temperature is raising serious concerns worldwide due to its potential negative effects such as droughts and melting of glaciers and ice caps leading to sea level rise. Expected impacts on soil compartment include floodings, seawater intrusions and use of saltwater for irrigation, with unknown effects on soil ecosystems and their inhabitants. The present study aimed at evaluating the effects of salinisation on soil ecosystems due to sea level rise. The reproduction and mortality of three standard soil invertebrate species (Folsomia candida, Enchytraeus crypticus, Hypoaspis aculeifer) in standard artificial OECD soil spiked with serial dilutions of seawater/gradient of NaCl were evaluated according to standard guidelines. An increased sensitivity was observed in the following order: H. aculeifer≪E. crypticus≈F. candida consistent with the different exposure pathways: springtails and enchytraeids are exposed by ingestion and contact while mites are mainly exposed by ingestion due to a continuous and thick exoskeleton. Although small differences were observed in the calculated effect electrical conductivity values, seawater and NaCl induced the same overall effects (with a difference in the enchytraeid tests where a higher sensitivity was found in relation to NaCl). The adverse effects described in the present study are observed on soils not considered saline. Therefore, the actual limit to define saline soils (4000 µS cm(-1)) does not reflect the existing knowledge when considering soil fauna.


Assuntos
Invertebrados/fisiologia , Salinidade , Água do Mar , Cloreto de Sódio/toxicidade , Poluentes do Solo/toxicidade , Animais , Artrópodes/efeitos dos fármacos , Ecossistema , Oligoquetos/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Solo/química , Temperatura
4.
Chemosphere ; 74(2): 187-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19004466

RESUMO

A previously developed potential cleanup tool for atrazine contaminated soils was evaluated in larger open soil microcosms for optimization under more realistic conditions, using a natural crop soil spiked with an atrazine commercial formulation (Atrazerba FL). The doses used were 20x or 200x higher than the recommended dose (RD) for an agricultural application, mimicking over-use or spill situations. Pseudomonas sp. strain ADP was used for bioaugmentation (around 10(7) or 10(8) viable cells g(-1) of soil) and citrate for biostimulation (up to 4.8 mg g(-1) of soil). Bioremediation treatments providing fastest and higher atrazine biodegradation proved to differ according to the initial level of soil contamination. For 20x RD of Atrazerba FL, a unique inoculation with Pseudomonas sp. ADP (9 +/- 1 x 10(7) CFU g(-1)) resulted in rapid atrazine removal (99% of the initial 7.2 +/- 1.6 microg g(-1) after 8d), independent of citrate. For 200x RD, an inoculation with the atrazine-degrading bacteria (8.5 +/- 0.5 x 10(7) CFU g(-1)) supplemented with citrate amendment (2.4 mg g(-1)) resulted in improved biodegradation (87%) compared with bioaugmentation alone (79%), even though 7.8 +/- 2.1 microg of atrazine g(-1) still remained in the soil after 1 wk. However, the same amount of inoculum, distributed over three successive inoculations and combined with citrate, increased Pseudomonas sp. ADP survival and atrazine biodegradation (to 98%, in 1 wk). We suggest that this bioremediation tool may be valuable for efficient removal of atrazine from contaminated field soils thus minimizing atrazine and its chlorinated derivatives from reaching water compartments.


Assuntos
Atrazina/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Ecossistema , Herbicidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA