Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 98(2): 549-562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393915

RESUMO

Background: Repurposing dantrolene to treat Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy. Objective: The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated. Methods: The bioavailability of intranasal ERFR was measured in 2 and 9-11-month-old C57BL/6J mice. Blood and brain samples were collected 20 minutes after a single ERFR dose, and the plasma and brain concentrations were analyzed. Baseline behavior was assessed in untreated PS19 tau transgenic mice at 6 and 9 months of age. PS19 mice were treated with intranasal ERFR, with or without acrolein (to potentiate cognitive dysfunction), for 3 months, beginning at 2 months of age. Animal behavior was examined, including cognition (cued and contextual fear conditioning, y-maze), motor function (rotarod), and olfaction (buried food test). Results: The dantrolene concentration in the blood and brain decreased with age, with the decrease greater in the blood resulting in a higher brain to blood concentration ratio. The behavioral assays showed no significant changes in cognition, olfaction, or motor function in the PS19 mice compared to controls after chronic treatment with intranasal ERFR, even with acrolein. Conclusions: Our studies suggest the intranasal administration of ERFR has higher concentrations in the brain than the blood in aged mice and has no serious systemic side effects with chronic use in PS19 mice.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Camundongos Transgênicos , Dantroleno/farmacologia , Administração Intranasal , Acroleína , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo , Modelos Animais de Doenças
2.
Res Sq ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214948

RESUMO

Background: Repurposing dantrolene as a potential disease-modifying treatment for Alzheimer's disease has been shown to be effective in amyloid transgenic mouse models but has not been examined in a model of tauopathy. Objective: The effects of a nanoparticle intranasal formulation, the Eagle Research Formulation of Ryanodex (ERFR), in young adult and aged wild type and PS19 tau transgenic mice was investigated. Methods: The bioavailability of intranasal ERFR was measured in 2 months and 9-12 month old C57BL/6J male mice. Mice received a single intranasal dose of ERFR and, after 20 min, blood and brain samples were collected. Dantrolene concentrations in the plasma and brain were analyzed by High Performance Liquid Chromatography. Animal behavior was examined in PS19 tau transgenic mice, with/without acrolein treatment to exacerbate cognitive deficits. Behavioral tests included cognition (cued and contextual fear conditioning, y-maze), motor function (rotarod), and olfaction (buried food test). Results: Dantrolene concentration in the blood and brain decreased with age, though the decrease was greater in the blood resulting in a higher brain to blood concentration ratio. The behavioral assays showed no significant changes in cognition, olfaction or motor function in the PS19 mice compared to controls after chronic ERFR treatment even with acrolein treatment. Conclusion: Our studies suggest that while we did not find PS19 mice to be a reliable Alzheimer animal model to test the therapeutic efficacy of dantrolene, the results suggest a potential for ERFR to be an effective chronic therapy for Alzheimer's disease and that further studies are indicated.

3.
Bioorg Med Chem Lett ; 28(19): 3194-3196, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30146095

RESUMO

This work describes the rational amelioration of Cytochrome P450 4/5 (CYP3A4/5) induction through the Pregnane-X Receptor (PXR) pathway in a series of compounds that modulate the metabotropic glutamate Receptor 2 (mGluR2) via an allosteric mechanism. The compounds were initially shown to induce CYP3A4/5 via the gold-standard induction assay measured in primary human hepatocytes. This was followed up by testing the compounds in a PXR assay which correlated well with the assay in primary cells. Further, one of the compounds was crystallized with PXR (pdb code 6DUP). Analysis of this co-crystal structure, together with previously published PXR co-crystal structures, lead to modification ideas. The compounds synthesized based on these ideas were shown not to be CYP3A4/5 inducers. The mGluR2 activity of the resulting compounds was maintained.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Receptor de Pregnano X/fisiologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Regulação Alostérica , Animais , Cristalografia por Raios X , Indução Enzimática/fisiologia , Humanos , Receptor de Pregnano X/química , Ratos
5.
Nutrition ; 18(4): 301-3, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11934540

RESUMO

Expression of high activities of both glutamine synthetase and glutaminase allows the liver to play a major role in the regulation of glutamine homeostasis. The liver shows net glutamine output in metabolic acidosis, in prolonged starvation and animals bearing tumors, net glutamine uptake in the postabsorptive state, on consuming high protein diets, and in uncontrolled diabetes or sepsis. Liver glutamine synthetase is expressed only in a small population of perivenous cells that allows it to salvage any ammonia not incorporated into urea in periportal cells. Hepatic glutaminase is a unique isozyme found only in periportal liver parenchymal cells where it provides glutamate and ammonia for the urea cycle. Control of hepatic glutamine metabolism occurs almost exclusively through changes in the activity of glutaminase, with no change in glutamine synthetase flux.


Assuntos
Glutamina/metabolismo , Fígado/metabolismo , Animais , Cães , Humanos , Técnicas In Vitro , Ratos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...