Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3651, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688918

RESUMO

Estimating fire emissions prior to the satellite era is challenging because observations are limited, leading to large uncertainties in the calculated aerosol climate forcing following the preindustrial era. This challenge further limits the ability of climate models to accurately project future climate change. Here, we reconstruct a gridded dataset of global biomass burning emissions from 1750 to 2010 using inverse analysis that leveraged a global array of 31 ice core records of black carbon deposition fluxes, two different historical emission inventories as a priori estimates, and emission-deposition sensitivities simulated by the atmospheric chemical transport model GEOS-Chem. The reconstructed emissions exhibit greater temporal variabilities which are more consistent with paleoclimate proxies. Our ice core constrained emissions reduced the uncertainties in simulated cloud condensation nuclei and aerosol radiative forcing associated with the discrepancy in preindustrial biomass burning emissions. The derived emissions can also be used in studies of ocean and terrestrial biogeochemistry.

2.
Sci Total Environ ; 912: 169431, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142989

RESUMO

Records from polar and alpine ice reflect past changes in background and industrial toxic heavy metal emissions. While Northern Hemisphere records have been used to evaluate environmental effects and linkages to historical events such as foreign conquests, plagues, economic downturns, and technological developments during the past three millennia, little is known about the magnitude and environmental effects of such emissions in the Southern Hemisphere or their historical linkages, especially prior to late 19th century industrialization. Here we used detailed measurements of the toxic heavy metals lead, cadmium, and thallium, as well as non-toxic bismuth, cerium, and sulfur in an array of five East Antarctic ice cores to investigate hemispheric-scale pollution during the Common Era. While thallium showed no anthropogenic increases, the other three metals increased by orders of magnitude in recent centuries after accounting for crustal and volcanic components. These first detailed records indicate that East Antarctic lead pollution started in the 13th century coincident with Late Intermediate Period metallurgy in the Andes and was pervasive during the Spanish Colonial period in parallel with large-scale exploitation of Andean silver and other ore deposits. Lead isotopic variations suggest that 19th-century increases in lead, cadmium, and bismuth resulted from Australian lead and Bolivian tin mining emissions, with 20th century pollution largely the result of the latter. As in the Northern Hemisphere, variations in heavy metal pollution coincided with plagues, cultural and technological developments, as well as global economic and political events including the Great Depression and the World Wars. Estimated atmospheric heavy metal emissions from Spanish Colonial-era mining and smelting during the late 16th and early 17th century were comparable to estimated European emissions during the 1st-century apex of the Roman Empire, with atmospheric model simulations suggesting hemispheric-scale toxic heavy metal pollution during the past five centuries as a result.

3.
Sci Total Environ ; 888: 164141, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37172843

RESUMO

Black carbon (BC), pyrogenic residues resulting from the incomplete combustion of organics, are liberated from wildfires at high rates. Subsequent introduction to aqueous environments via atmospheric deposition or overland flow results in the formation of a dissolved fraction, called dissolved black carbon (DBC). As wildfire frequency and intensity increases along with a changing climate, it becomes imperative to understand the impact a concurrent increase in DBC load might have to aquatic ecosystems. In the atmosphere BC stimulates warming by absorbing solar radiation, and similar processes may occur with surface waters that contain DBC. In this work we investigated whether the addition of environmentally relevant levels of DBC could impact surface water heating dynamics in experimental settings. DBC was quantified at multiple locations and depths in Pyramid Lake (NV, USA) during peak fire season while two large, proximal wildfires burned. DBC was detected in Pyramid Lake water at all sampled locations at concentrations (3.6-18 ppb) significantly higher than those reported for other large inland lakes. DBC was positively correlated (R2 = 0.84) with chromophoric dissolved organic matter (CDOM) but not bulk dissolved or total organic carbon (DOC, TOC), suggesting that DBC is a significant component of the optically active organics in the lake. Subsequent lab-based experiments were conducted by adding environmentally relevant levels of DBC standards to pure water, exposing the system to solar spectrum radiation, and creating a numerical model of heat transfer based on observed temperatures. The addition of DBC at environmentally relevant orders of magnitude caused reductions to shortwave albedo when exposed to the solar spectrum, which resulted in 5-8 % more incident radiation being absorbed by water and changes to water heating dynamics. In environmental settings, this increase in energy absorption could translate to increased heating of the epilimnion in Pyramid Lake and other wildfire-impacted surface waters.

4.
Nat Commun ; 14(1): 271, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650124

RESUMO

Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.


Assuntos
Clima , Combustíveis Fósseis , Atmosfera , Fuligem/análise , Carbono
5.
Sci Rep ; 13(1): 1166, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670239

RESUMO

Military conflicts result in local environmental damage, but documenting regional and larger scale impacts such as heavy metal pollution has proven elusive. Anthropogenic emissions of bismuth (Bi) include coal burning and various commodity productions but no emission estimates over the past century exist. Here we used Bi measurements in ice cores from the French Alps to show evidence of regional-scale Bi pollution concurrent with the Spanish Civil War and World War II. Tracers of the main sources of Bi emissions measured in the same ice-coal-burning, steel- and aluminum-industry, alloy and other metal processing-indicate a major, previously undocumented additional emissions source that we attribute to military activities between 1935 and 1945 Common Era (CE) in western Europe. These include the use of bismuth for low-melting point alloys for shells, thin-walled aluminum alloy aircraft oil, and munitions.

6.
Nature ; 612(7941): E20-E21, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543950
7.
Nature ; 598(7879): 82-85, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616056

RESUMO

New Zealand was among the last habitable places on earth to be colonized by humans1. Charcoal records indicate that wildfires were rare prior to colonization and widespread following the 13th- to 14th-century Maori settlement2, but the precise timing and magnitude of associated biomass-burning emissions are unknown1,3, as are effects on light-absorbing black carbon aerosol concentrations over the pristine Southern Ocean and Antarctica4. Here we used an array of well-dated Antarctic ice-core records to show that while black carbon deposition rates were stable over continental Antarctica during the past two millennia, they were approximately threefold higher over the northern Antarctic Peninsula during the past 700 years. Aerosol modelling5 demonstrates that the observed deposition could result only from increased emissions poleward of 40° S-implicating fires in Tasmania, New Zealand and Patagonia-but only New Zealand palaeofire records indicate coincident increases. Rapid deposition increases started in 1297 (±30 s.d.) in the northern Antarctic Peninsula, consistent with the late 13th-century Maori settlement and New Zealand black carbon emissions of 36 (±21 2 s.d.) Gg y-1 during peak deposition in the 16th century. While charcoal and pollen records suggest earlier, climate-modulated burning in Tasmania and southern Patagonia6,7, deposition in Antarctica shows that black carbon emissions from burning in New Zealand dwarfed other preindustrial emissions in these regions during the past 2,000 years, providing clear evidence of large-scale environmental effects associated with early human activities across the remote Southern Hemisphere.


Assuntos
Incêndios/história , Atividades Humanas/história , Havaiano Nativo ou Outro Ilhéu do Pacífico/história , Fuligem/análise , Atmosfera/química , Biomassa , História do Século XV , História do Século XVI , História Medieval , Humanos , Nova Zelândia , Tasmânia
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518222

RESUMO

Reconstruction of the North Atlantic jet stream (NAJ) presents a critical, albeit largely unconstrained, paleoclimatic target. Models suggest northward migration and changing variance of the NAJ under 21st-century warming scenarios, but assessing the significance of such projections is hindered by a lack of long-term observations. Here, we incorporate insights from an ensemble of last-millennium water isotope-enabled climate model simulations and a wide array of mean annual water isotope ([Formula: see text]O) and annually accumulated snowfall records from Greenland ice cores to reconstruct North Atlantic zonal-mean zonal winds back to the 8th century CE. Using this reconstruction we provide preobservational constraints on both annual mean NAJ position and intensity to show that late 20th- and early 21st-century NAJ variations were likely not unique relative to natural variability. Rather, insights from our 1,250 year reconstruction highlight the overwhelming role of natural variability in thus far masking the response of midlatitude atmospheric dynamics to anthropogenic forcing, consistent with recent large-ensemble transient modeling experiments. This masking is not projected to persist under high greenhouse gas emissions scenarios, however, with model projected annual mean NAJ position emerging as distinct from the range of reconstructed natural variability by as early as 2060 CE.

9.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049885

RESUMO

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth's climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.

11.
Proc Natl Acad Sci U S A ; 117(42): 26061-26068, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32989145

RESUMO

The Tierra Blanca Joven (TBJ) eruption from Ilopango volcano deposited thick ash over much of El Salvador when it was inhabited by the Maya, and rendered all areas within at least 80 km of the volcano uninhabitable for years to decades after the eruption. Nonetheless, the more widespread environmental and climatic impacts of this large eruption are not well known because the eruption magnitude and date are not well constrained. In this multifaceted study we have resolved the date of the eruption to 431 ± 2 CE by identifying the ash layer in a well-dated, high-resolution Greenland ice-core record that is >7,000 km from Ilopango; and calculated that between 37 and 82 km3 of magma was dispersed from an eruption coignimbrite column that rose to ∼45 km by modeling the deposit thickness using state-of-the-art tephra dispersal methods. Sulfate records from an array of ice cores suggest stratospheric injection of 14 ± 2 Tg S associated with the TBJ eruption, exceeding those of the historic eruption of Pinatubo in 1991. Based on these estimates it is likely that the TBJ eruption produced a cooling of around 0.5 °C for a few years after the eruption. The modeled dispersal and higher sulfate concentrations recorded in Antarctic ice cores imply that the cooling would have been more pronounced in the Southern Hemisphere. The new date confirms the eruption occurred within the Early Classic phase when Maya expanded across Central America.

12.
Sci Total Environ ; 743: 140695, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679494

RESUMO

Tree-ring records are a potential archive for reconstructing long-term historical trends in atmospheric mercury (Hg) concentrations. Although Hg preserved in tree rings has been shown to be derived largely from the atmosphere, quantitative relationships linking atmospheric concentrations to those in tree rings are limited. In addition, few tree-ring-based Hg records have been evaluated against co-located proxies of atmospheric Hg deposition or direct atmospheric measurements. Here we develop long-term Hg records extending from 1800 to 2018 CE using cores collected from two stands of whitebark pine located near the Upper Fremont Glacier in the Wind River Range, Wyoming, where a long-term record of atmospheric Hg deposition previously was developed from an ice core. The tree ring record showed that Hg concentrations increased beginning in 1800 CE to a broad peak centered at ~1960 CE, before decreasing to present, generally paralleling the ice-core record of Hg deposition. The exact timing and magnitude of the Hg increases in the trees, however, is offset earlier relative to the ice-core record. These discrepancies potentially arise from biotic processes that impact Hg uptake and preservation in whitebark pine, and results from an advection-diffusion model indicate that the temporal differences are consistent with radial movement of Hg within the trees. The forms of atmospheric Hg and seasonality may also impact the Hg record preserved by each archive, but are less likely to affect long-term trends. Further work is needed to assess radial Hg translocation in more controlled studies with larger sample sizes.


Assuntos
Mercúrio/análise , Atmosfera , Monitoramento Ambiental , Camada de Gelo , Wyoming
13.
Proc Natl Acad Sci U S A ; 117(27): 15443-15449, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571905

RESUMO

The assassination of Julius Caesar in 44 BCE triggered a power struggle that ultimately ended the Roman Republic and, eventually, the Ptolemaic Kingdom, leading to the rise of the Roman Empire. Climate proxies and written documents indicate that this struggle occurred during a period of unusually inclement weather, famine, and disease in the Mediterranean region; historians have previously speculated that a large volcanic eruption of unknown origin was the most likely cause. Here we show using well-dated volcanic fallout records in six Arctic ice cores that one of the largest volcanic eruptions of the past 2,500 y occurred in early 43 BCE, with distinct geochemistry of tephra deposited during the event identifying the Okmok volcano in Alaska as the source. Climate proxy records show that 43 and 42 BCE were among the coldest years of recent millennia in the Northern Hemisphere at the start of one of the coldest decades. Earth system modeling suggests that radiative forcing from this massive, high-latitude eruption led to pronounced changes in hydroclimate, including seasonal temperatures in specific Mediterranean regions as much as 7 °C below normal during the 2 y period following the eruption and unusually wet conditions. While it is difficult to establish direct causal linkages to thinly documented historical events, the wet and very cold conditions from this massive eruption on the opposite side of Earth probably resulted in crop failures, famine, and disease, exacerbating social unrest and contributing to political realignments throughout the Mediterranean region at this critical juncture of Western civilization.


Assuntos
Mudança Climática/história , Clima Frio/efeitos adversos , Desastres/história , Mundo Romano/história , Erupções Vulcânicas/efeitos adversos , Alaska , Clima , Produtos Agrícolas/história , Fome Epidêmica/história , História Antiga , Camada de Gelo , Região do Mediterrâneo , Política , Erupções Vulcânicas/história
14.
Proc Natl Acad Sci U S A ; 116(30): 14910-14915, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285330

RESUMO

Lead pollution in Arctic ice reflects large-scale historical changes in midlatitude industrial activities such as ancient lead/silver production and recent fossil fuel burning. Here we used measurements in a broad array of 13 accurately dated ice cores from Greenland and Severnaya Zemlya to document spatial and temporal changes in Arctic lead pollution from 200 BCE to 2010 CE, with interpretation focused on 500 to 2010 CE. Atmospheric transport modeling indicates that Arctic lead pollution was primarily from European emissions before the 19th-century Industrial Revolution. Temporal variability was surprisingly similar across the large swath of the Arctic represented by the array, with 250- to 300-fold increases in lead pollution observed from the Early Middle Ages to the 1970s industrial peak. Superimposed on these exponential changes were pronounced, multiannual to multidecadal variations, marked by increases coincident with exploitation of new mining regions, improved technologies, and periods of economic prosperity; and decreases coincident with climate disruptions, famines, major wars, and plagues. Results suggest substantial overall growth in lead/silver mining and smelting emissions-and so silver production-from the Early through High Middle Ages, particularly in northern Europe, with lower growth during the Late Middle Ages into the Early Modern Period. Near the end of the second plague pandemic (1348 to ∼1700 CE), lead pollution increased sharply through the Industrial Revolution. North American and European pollution abatement policies have reduced Arctic lead pollution by >80% since the 1970s, but recent levels remain ∼60-fold higher than at the start of the Middle Ages.

15.
Nat Commun ; 10(1): 2026, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048696

RESUMO

Forest fires are increasing across the American West due to climate warming and fire suppression. Accelerated snow melt occurs in burned forests due to increased light transmission through the canopy and decreased snow albedo from deposition of light-absorbing impurities. Using satellite observations, we document up to an annual 9% growth in western forests burned since 1984, and 5 day earlier snow disappearance persisting for >10 years following fire. Here, we show that black carbon and burned woody debris darkens the snowpack and lowers snow albedo for 15 winters following fire, using measurements of snow collected from seven forested sites that burned between 2002 and 2016. We estimate a 372 to 443% increase in solar energy absorbed by snowpacks occurred beneath charred forests over the past two decades, with enhanced post-fire radiative forcing in 2018 causing earlier melt and snow disappearance in > 11% of forests in the western seasonal snow zone.

16.
Environ Sci Technol ; 53(10): 5887-5894, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31070370

RESUMO

Measurement of elemental concentrations in ice cores are critical for determining atmospheric aerosol variations. For such measurements, acidified ice-core meltwater typically is analyzed continuously (<5 min after acidification) or discretely (∼3 months after acidification). The reduced acidification time during continuous analysis may result in a measured elemental concentration that is lower than the concentration of discrete analysis if particulates are not fully dissolved. To evaluate this, sections of three ice cores from Greenland and Antarctica were measured both continuously (4.5 min after acidification) and discretely (repeatedly from 1 to 151 days after continuous measurements), with discrete samples collected from the meltwater sample stream prior to continuous measurement. We show that elements such as Na, Sr, and S dissolved readily and therefore were fully recovered during continuous measurements. Average recovery for other elements was between 70 to 100% for Cd, Gd, Mg, Mn, U, and Yb, 50 to 90% for Ca, Ce, Sm, and V, and less than 50% for Al, Fe, and La. Given the advantages of continuous measurements, we conclude that the preferred method for ice-core measurements is continuous analysis with simultaneous discrete sample collection, followed by adjustment of the continuous measurements based on discrete sample analysis at least 3 months after acidification.


Assuntos
Gelo , Regiões Antárticas , Groenlândia , Gelo/análise , Íons
17.
Proc Natl Acad Sci U S A ; 115(48): 12136-12141, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420500

RESUMO

Iodine is an important nutrient and a significant sink of tropospheric ozone, a climate-forcing gas and air pollutant. Ozone interacts with seawater iodide, leading to volatile inorganic iodine release that likely represents the largest source of atmospheric iodine. Increasing ozone concentrations since the preindustrial period imply that iodine chemistry and its associated ozone destruction is now substantially more active. However, the lack of historical observations of ozone and iodine means that such estimates rely primarily on model calculations. Here we use seasonally resolved records from an Alpine ice core to investigate 20th century changes in atmospheric iodine. After carefully considering possible postdepositional changes in the ice core record, we conclude that iodine deposition over the Alps increased by at least a factor of 3 from 1950 to the 1990s in the summer months, with smaller increases during the winter months. We reproduce these general trends using a chemical transport model and show that they are due to increased oceanic iodine emissions, coupled to a change in iodine speciation over Europe from enhanced nitrogen oxide emissions. The model underestimates the increase in iodine deposition by a factor of 2, however, which may be due to an underestimate in the 20th century ozone increase. Our results suggest that iodine's impact on the Northern Hemisphere atmosphere accelerated over the 20th century and show a coupling between anthropogenic pollution and the availability of iodine as an essential nutrient to the terrestrial biosphere.


Assuntos
Poluentes Atmosféricos/química , Gelo/análise , Iodo/química , Água do Mar/química , Atmosfera , Clima , Europa (Continente) , Ozônio/química , Estações do Ano
18.
Proc Natl Acad Sci U S A ; 115(22): 5726-5731, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760088

RESUMO

Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead-silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead-silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.


Assuntos
Poluentes Ambientais , Gelo/análise , Chumbo , Mundo Romano/história , Conflitos Armados/história , Surtos de Doenças/história , Poluentes Ambientais/análise , Poluentes Ambientais/história , Indústrias Extrativas e de Processamento/história , Groenlândia , História Antiga , Humanos , Chumbo/análise , Chumbo/história , Prata/história
19.
Proc Natl Acad Sci U S A ; 114(38): 10035-10040, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874529

RESUMO

Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

20.
Environ Sci Technol ; 51(8): 4230-4238, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28375598

RESUMO

The Upper Fremont Glacier (UFG), Wyoming, is one of the few continental glaciers in the contiguous United States known to preserve environmental and climate records spanning recent centuries. A pair of ice cores taken from UFG have been studied extensively to document changes in climate and industrial pollution (most notably, mid-19th century increases in mercury pollution). Fundamental to these studies is the chronology used to map ice-core depth to age. Here, we present a revised chronology for the UFG ice cores based on new measurements and using a novel dating approach of synchronizing continuous water isotope measurements to a nearby tree-ring chronology. While consistent with the few unambiguous age controls underpinning the previous UFG chronologies, the new interpretation suggests a very different time scale for the UFG cores with changes of up to 80 years. Mercury increases previously associated with the mid-19th century Gold Rush now coincide with early-20th century industrial emissions, aligning the UFG record with other North American mercury records from ice and lake sediment cores. Additionally, new UFG records of industrial pollutants parallel changes documented in ice cores from southern Greenland, further validating the new UFG chronologies while documenting the extent of late 19th and early 20th century pollution in remote North America.


Assuntos
Camada de Gelo , Árvores , Isótopos , Mercúrio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...