Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(12): 4510-4518, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516096

RESUMO

Superlattice formation afforded by metal halide perovskite nanocrystals has been a phenomenon of interest due to the high structural order induced in these self-assemblies, an order that is influenced by the surface chemistry and particle morphology of the starting building block material. In this work, we report on the formation of superlattices from aluminum oxide shelled CsPbBr3 perovskite nanocrystals where the oxide shell is grown by colloidal atomic layer deposition. We demonstrate that the structural stability of these superlattices is preserved over 25 days in an inert atmosphere and that colloidal atomic layer deposition on colloidal perovskite nanocrystals yields structural protection and an enhancement in photoluminescence quantum yields and radiative lifetimes as opposed to gas phase atomic layer deposition on pre-assembled superlattices or excess capping group addition. Structural analyses found that shelling resulted in smaller nanocrystals that form uniform supercrystals. These effects are in addition to the increasingly static capping group chemistry initiated where oleic acid is installed as a capping ligand directly on aluminum oxide. Together, these factors lead to fundamental observations that may influence future superlattice assembly design.

2.
Perception ; 53(1): 17-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37859336

RESUMO

Everyday experiences suggest that a container, such as a box of cereal, can convey pertinent information about the nature and quantity of its content. This study investigated how well people can judge large quantities of objects in a container through haptic perception. Stimuli consisted of plastic drinking straws cut to "small" (1.5 cm) or "big" (4.5 cm) pieces contained in plastic food containers. Participants performed both a magnitude estimation of the number of objects and a direct estimation of the proportion of the container perceived to be filled with objects. Overall, participants demonstrated considerable accuracy for both tasks and irrespective of the size of the content. Post-experiment interviews revealed three potential strategies. Participants either focused on the container's contents, the excess space in the container, or the perceived weight of the container (content).


Assuntos
Percepção do Tato , Tato , Humanos
3.
J Am Chem Soc ; 145(46): 25401-25410, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948677

RESUMO

Nanosized particles of liquid metals are emerging materials that hold promise for applications spanning from microelectronics to catalysis. Yet, knowledge of their chemical reactivity is largely unknown. Here, we study the reactivity of liquid Ga and Cu nanoparticles under the application of a cathodic voltage. We discover that the applied voltage and the spatial proximity of these two particle precursors dictate the reaction outcome. In particular, we find that a gradual voltage ramp is crucial to reduce the native oxide skin of gallium and enable reactive wetting between the Ga and Cu nanoparticles; instead, a voltage step causes dewetting between the two. We determine that the use of liquid Ga/Cu nanodimer precursors, which consist of an oxide-covered Ga domain interfaced with a metallic Cu domain, provides a more uniform mixing and results in more homogeneous reaction products compared to a physical mixture of Ga and Cu NPs. Having learned this, we obtain CuGa2 alloys or solid@liquid CuGa2@Ga core@shell nanoparticles by tuning the stoichiometry of Ga and Cu in the nanodimer precursors. These products reveal an interesting complementarity of thermal and voltage-driven syntheses to expand the compositional range of bimetallic NPs. Finally, we extend the voltage-driven synthesis to the combination of Ga with other elements (Ag, Sn, Co, and W). By rationalizing the impact of the native skin reduction rate, the wetting properties, and the chemical reactivity between Ga and other metals on the results of such voltage-driven chemical manipulation, we define the criteria to predict the outcome of this reaction and set the ground for future studies targeting various applications for multielement nanomaterials based on liquid Ga.

4.
J Am Chem Soc ; 145(9): 5370-5383, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847799

RESUMO

Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.

6.
Nanoscale ; 13(4): 2618-2625, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33491702

RESUMO

Galvanic replacement reactions are a reliable method for transforming monometallic nanotemplates into bimetallic products with complex nanoscale architectures. When replacing bimetallic nanotemplates, even more complex multimetallic products can be made, with final nanocrystal shapes and architectures depending on multiple processes, including Ostwald ripening and the Kirkendall effect. Galvanic replacement, therefore, is a promising tool in increasing the architectural complexity of multimetallic templates, especially if we can identify and control the relevant processes in a given system and apply them more broadly. Here, we study the transformation of intermetallic PdCu nanoparticles in the presence of HAuCl4 and H2PtCl6, both of which are capable of oxidizing both Pd and Cu. Replacement products consistently lost Cu more quickly than Pd, preserved the crystal structure of the original intermetallic template, and grew a new phase on the sacrificial template. In this way, atomic and nanometer-scale architectures are integrated within individual nanocrystals. Product morphologies included faceting of the original spherical particles as well as formation of core@shell and Janus-style particles. These variations are rationalized in terms of differing diffusion behaviors. Overall, galvanic replacement of multimetallic templates is shown to be a route toward increasingly exotic particle architectures with control exerted on both Angstrom and nanometer-scale features, while inviting further consideration of template and oxidant choices.

7.
ACS Nano ; 14(11): 15953-15961, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33119253

RESUMO

The organization of natural materials into hierarchical structures accounts for the amazing properties of many biological systems; however, translating the structural motifs present in such natural materials to synthetic systems remains difficult. Inspired by how nature creates materials, this work demonstrates that kinetically controlled sequential seeded growth is a general bottom-up strategy to prepare hierarchical inorganic crystals with distinct compositions and nanostructured forms. Specifically, 85 distinct hierarchical crystals with different shape-controlled features, compositions, and overall symmetries were readily achieved by altering the kinetics of metal deposition in sequential rounds of seeded growth. These modifications in the deposition kinetics were achieved through simple changes to the reaction conditions (e.g., pH or halide concentration) and dictate whether concave or convex features are produced at specific seed locations, much in the manner that the changing atmospheric conditions account for the hierarchical and symmetrical structures of snow crystals. As such, this work provides a general paradigm for the bottom-up synthesis of hierarchical crystals regardless of inorganic material class.

8.
Dalton Trans ; 49(36): 12530-12535, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32426778

RESUMO

As a nanocrystal's structural characteristics relate strongly to its properties, designing increasingly precise syntheses is important for making nanocrystals that are most tailored for a particular application. Importing concepts traditionally associated with the chemistry of small molecules has historically expanded the array of tools available to exert fine control over a nanocrystal's shape and architecture, and consequently its function. Here, we focus on recent work on using concepts from molecular chemistry such as regioselectivity and chemoselectivity in seeded or template-engaged syntheses, and generally draw attention to the idea of having anisotropic, spatially controlled reactivity on a nanocrystal's surface by design.

9.
ACS Nano ; 11(12): 12624-12631, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29164855

RESUMO

Crystal growth theory predicts that heterogeneous nucleation will occur preferentially at defect sites, such as the vertices rather than the faces of shape-controlled seeds. Platonic metal solids are generally assumed to have vertices with nearly identical chemical potentials, and also nearly identical faces, leading to the useful generality that heterogeneous nucleation preserves the symmetry of the original seeds in the final product. Herein, we test the limits of this generality in the extreme of low supersaturation, in an effort to expand the methods available for inducing anisotropic overgrowth. We formulate a strategy for favoring localized deposition that differentiates between both different vertices and different edges or faces, i.e., regioselective deposition. Deposition followed a simple kinetic model for nucleation rate, depending on wetting, supersaturation, and temperature. We demonstrate our ability to independently study the effects of varying supersaturation and surface passivation. Regioselective heterogeneous nucleation was achieved at low supersaturation by a kinetic preference for high-energy defect-rich sites over lower-energy sites. This outcome was also achieved by using capping agents to passivate facet sites where deposition was not desired. Collectively, the results presented herein provide a model for breaking the symmetry of seeded growth and for achieving regioselective deposition.

10.
J Biol Chem ; 290(8): 4590-4603, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25555908

RESUMO

The association of unesterified fatty acid (FA) with the scavenger receptor CD36 has been actively researched, with focuses on FA and oxidized low density lipoprotein (oxLDL) uptake. CD36 has been shown to bind FA, but this interaction has been poorly characterized to date. To gain new insights into the physiological relevance of binding of FA to CD36, we characterized FA binding to the ectodomain of CD36 by the biophysical method surface plasmon resonance. Five structurally distinct FAs (saturated, monounsaturated (cis and trans), polyunsaturated, and oxidized) were pulsed across surface plasmon resonance channels, generating association and dissociation binding curves. Except for the oxidized FA HODE, all FAs bound to CD36, with rapid association and dissociation kinetics similar to HSA. Next, to elucidate the role that each FA might play in CD36-mediated oxLDL uptake, we used a fluorescent oxLDL (Dii-oxLDL) live cell assay with confocal microscopy imaging. CD36-mediated uptake in serum-free medium was very low but greatly increased when serum was present. The addition of exogenous FA in serum-free medium increased oxLDL binding and uptake to levels found with serum and affected CD36 plasma membrane distribution. Binding/uptake of oxLDL was dependent upon the FA dose, except for docosahexaenoic acid, which exhibited binding to CD36 but did not activate the uptake of oxLDL. HODE also did not affect oxLDL uptake. High affinity FA binding to CD36 and the effects of each FA on oxLDL uptake have important implications for protein conformation, binding of other ligands, functional properties of CD36, and high plasma FA levels in obesity and type 2 diabetes.


Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos/metabolismo , Lipoproteínas LDL/metabolismo , Antígenos CD36/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Ácidos Graxos/genética , Células HEK293 , Células HeLa , Humanos , Lipoproteínas LDL/genética , Obesidade/sangue , Obesidade/genética , Ligação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...