Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(5): 3331-3337, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32202803

RESUMO

We report on the thermal conductivities of two-dimensional metal halide perovskite films measured by time domain thermoreflectance. Depending on the molecular substructure of ammonium cations and owing to the weaker interactions in the layered structures, the thermal conductivities of our two-dimensional hybrid perovskites range from 0.10 to 0.19 W m-1 K-1, which is drastically lower than that of their three-dimensional counterparts. We use molecular dynamics simulations to show that the organic component induces a reduction of the stiffness and sound velocities along with giving rise to vibrational modes in the 5-15 THz range that are absent in the three-dimensional counterparts. By systematically studying eight different two-dimensional hybrid perovskites, we show that the thermal conductivities of our hybrid films do not depend on the thicknesses of the organic layers and instead are highly dependent on the relative orientation of the organic chains sandwiched between the inorganic constituents.

2.
J Chem Phys ; 152(1): 014703, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914767

RESUMO

The extended charge carrier lifetime in metal halide perovskites is responsible for their excellent optoelectronic properties. Recent studies indicate that the superb device performance in these materials is intimately related to the organic cation dynamics. Here, we focus on the investigation of the two-dimensional hybrid perovskite, (C8H17NH3)2PbI4 (henceforth, OA+ = C8H17NH3 +). Using elastic and quasielastic neutron scattering techniques and group theoretical analysis, we studied the structural phase transitions and rotational modes of the C8H17NH3 + cation in (OA)2PbI4. Our results show that, in the high-temperature orthorhombic (T > 310 K) phase, the OA+ cation exhibits a combination of a twofold rotation of the NH3-CH2 head group about the crystal c-axis with a characteristic relaxation time of ∼6.2 ps, threefold rotations (C3) of NH3 and CH3 terminal groups, and slow librations of the other atoms. Contrastingly, only the C3 rotation is present in the intermediate-temperature orthorhombic (238 K < T < 310 K) and low-temperature monoclinic (T < 238 K) phases.

3.
Nano Lett ; 18(10): 6271-6278, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216078

RESUMO

Metal halide perovskite thin films have achieved remarkable performance in optoelectronic devices but suffer from spatial heterogeneity in their electronic properties. To achieve higher device performance and reliability needed for widespread commercial deployment, spatial heterogeneity of optoelectronic properties in the perovskite thin film needs to be understood and controlled. Clear identification of the causes underlying this heterogeneity, most importantly the spatial heterogeneity in charge trapping behavior, has remained elusive. Here, a multimodal imaging approach consisting of photoluminescence, optical transmission, and atomic force microscopy is utilized to separate electronic heterogeneity from morphology variations in perovskite thin films. By comparing the degree of heterogeneity in highly oriented and randomly oriented polycrystalline perovskite thin film samples, we reveal that disorders in the crystallographic orientation of the grains play a dominant role in determining charge trapping and electronic heterogeneity. This work also demonstrates a polycrystalline thin film with uniform charge trapping behavior by minimizing crystallographic orientation disorder. These results suggest that single crystals may not be required for perovskite thin film based optoelectronic devices to reach their full potential.

4.
Nat Commun ; 9(1): 1336, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626205

RESUMO

Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.

5.
J Phys Chem Lett ; 8(14): 3206-3210, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28656769

RESUMO

In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiOx layer that performs as well as the high temperature TiO2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiOx is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO2. Flexible perovskite solar cells that employ a room-temperature TiOx layer with a power conversion efficiency of 14.3% are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...