Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4482, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918324

RESUMO

Whole-genome recoding has been shown to enable nonstandard amino acids, biocontainment and viral resistance in bacteria. Here we take the first steps to extend this to human cells demonstrating exceptional base editing to convert TAG to TAA for 33 essential genes via a single transfection, and examine base-editing genome-wide (observing ~40 C-to-T off-target events in essential gene exons). We also introduce GRIT, a computational tool for recoding. This demonstrates the feasibility of recoding, and highly multiplex editing in mammalian cells.


Assuntos
Edição de Genes , Genoma Humano , Animais , Sistemas CRISPR-Cas/genética , Códon de Terminação , Éxons , Genes Essenciais , Genoma Humano/genética , Humanos , Mamíferos/genética
2.
Science ; 374(6573): eabk0410, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34882480

RESUMO

Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)­dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2­binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type­specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.


Assuntos
Catarata/patologia , Senescência Celular , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Cristalino/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Senilidade Prematura , Animais , Evolução Biológica , Proteínas de Ligação ao Cálcio/metabolismo , Catarata/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Camundongos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
G3 (Bethesda) ; 10(12): 4553-4563, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023974

RESUMO

The genetic contribution of additive vs. non-additive (epistatic) effects in the regulation of complex traits is unclear. While genome-wide association studies typically ignore gene-gene interactions, in part because of the lack of statistical power for detecting them, mouse chromosome substitution strains (CSSs) represent an alternate approach for detecting epistasis given their limited allelic variation. Therefore, we utilized CSSs to identify and map both additive and epistatic loci that regulate a range of hematologic- and metabolism-related traits, as well as hepatic gene expression. Quantitative trait loci (QTL) were identified using a CSS-based backcross strategy involving the segregation of variants on the A/J-derived substituted chromosomes 4 and 6 on an otherwise C57BL/6J genetic background. In the liver transcriptomes of offspring from this cross, we identified and mapped additive QTL regulating the hepatic expression of 768 genes, and epistatic QTL pairs for 519 genes. Similarly, we identified additive QTL for fat pad weight, platelets, and the percentage of granulocytes in blood, as well as epistatic QTL pairs controlling the percentage of lymphocytes in blood and red cell distribution width. The variance attributed to the epistatic QTL pairs was approximately equal to that of the additive QTL; however, the SNPs in the epistatic QTL pairs that accounted for the largest variances were undetected in our single locus association analyses. These findings highlight the need to account for epistasis in association studies, and more broadly demonstrate the importance of identifying genetic interactions to understand the complete genetic architecture of complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Herança Multifatorial , Animais , Cromossomos/genética , Epistasia Genética , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Locos de Características Quantitativas
4.
J Clin Endocrinol Metab ; 104(10): 4676-4682, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31162547

RESUMO

BACKGROUND: Somatic mutations in the ubiquitin-specific peptidase 8 (USP8) gene are common in corticotropinomas of children with Cushing disease (CD). We report a unique patient with a germline USP8 mutation who presented with CD and a constellation of other findings that constitute an intriguing genetic syndrome. CASE DESCRIPTION: We describe a 16-year-old female with CD, developmental delay, dysmorphic features, ichthyosiform hyperkeratosis, chronic lung disease, chronic kidney disease, hyperglycemia, dilated cardiomyopathy with congestive heart failure, and previous history of hyperinsulinism and partial GH deficiency. She was diagnosed with CD at 14 years old and underwent transsphenoidal surgery. Despite initial improvement, she developed recurrent CD. METHODS: DNA was extracted from peripheral blood and tumor DNA; whole-exome and Sanger confirmatory sequencing were performed. Immunohistochemistry was performed on the resected adenoma. RESULTS: A de novo germline heterozygous USP8 mutation (c.2155T>C, p.S719P) in the critical 14-3-3 binding motif hot spot locus of the gene was identified in both the peripheral blood and tumor DNA. Histopathologic evaluation of the resected tumor confirmed an ACTH-secreting adenoma. CONCLUSION: Somatic USP8 mutations are common in adenomas causing CD, but to date, no germline defects have been reported. We describe a patient with a de novo germline USP8 mutation with recurrent CD and multiple other medical problems. This unique patient informs us of the multitude of signaling events that may be controlled by USP8.


Assuntos
Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação em Linhagem Germinativa , Hipersecreção Hipofisária de ACTH/complicações , Hipersecreção Hipofisária de ACTH/genética , Ubiquitina Tiolesterase/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Fenótipo , Hipersecreção Hipofisária de ACTH/patologia , Síndrome
5.
PLoS Genet ; 15(4): e1008088, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31034465

RESUMO

PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe's syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Catarata/genética , Transtornos da Motilidade Ciliar/genética , Nanismo/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Adolescente , Adulto , Criança , Consanguinidade , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Linhagem , Fenótipo , Adulto Jovem
6.
Hum Mol Genet ; 27(11): 1913-1926, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566152

RESUMO

Primary ovarian insufficiency (POI) is characterized by amenorrhea and loss or dysfunction of ovarian follicles prior to the age of 40. POI has been associated with autosomal recessive mutations in genes involving hormonal signaling and folliculogenesis, however, the genetic etiology of POI most often remains unknown. Here we report MRPS22 homozygous missense variants c.404G>A (p.R135Q) and c.605G>A (p.R202H) identified in four females from two independent consanguineous families as a novel genetic cause of POI in adolescents. Both missense mutations identified in MRPS22 are rare, occurred in highly evolutionarily conserved residues, and are predicted to be deleterious to protein function. In contrast to prior reports of mutations in MRPS22 associated with severe mitochondrial disease, the POI phenotype is far less severe. Consistent with this genotype-phenotype correlation, mitochondrial defects in oxidative phosphorylation or rRNA levels were not detected in fibroblasts derived from the POI patients, suggesting a non-bioenergetic or tissue-specific mitochondrial defect. Furthermore, we demonstrate in a Drosophila model that mRpS22 deficiency specifically in somatic cells of the ovary had no effect on fertility, whereas flies with mRpS22 deficiency specifically in germ cells were infertile and agametic, demonstrating a cell autonomous requirement for mRpS22 in germ cell development. These findings collectively identify that MRPS22, a component of the small mitochondrial ribosome subunit, is critical for ovarian development and may therefore provide insight into the pathophysiology and treatment of ovarian dysfunction.


Assuntos
Proteínas de Drosophila/genética , Fertilidade/genética , Proteínas Mitocondriais/genética , Insuficiência Ovariana Primária/genética , Proteínas Ribossômicas/genética , Adolescente , Adulto , Amenorreia/genética , Amenorreia/patologia , Animais , Modelos Animais de Doenças , Drosophila/genética , Feminino , Fertilidade/fisiologia , Homozigoto , Humanos , Menopausa Precoce/genética , Mutação de Sentido Incorreto/genética , Folículo Ovariano/patologia , Insuficiência Ovariana Primária/patologia , Adulto Jovem
7.
PLoS Genet ; 13(9): e1007025, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28961251

RESUMO

The relative contributions of additive versus non-additive interactions in the regulation of complex traits remains controversial. This may be in part because large-scale epistasis has traditionally been difficult to detect in complex, multi-cellular organisms. We hypothesized that it would be easier to detect interactions using mouse chromosome substitution strains that simultaneously incorporate allelic variation in many genes on a controlled genetic background. Analyzing metabolic traits and gene expression levels in the offspring of a series of crosses between mouse chromosome substitution strains demonstrated that inter-chromosomal epistasis was a dominant feature of these complex traits. Epistasis typically accounted for a larger proportion of the heritable effects than those due solely to additive effects. These epistatic interactions typically resulted in trait values returning to the levels of the parental CSS host strain. Due to the large epistatic effects, analyses that did not account for interactions consistently underestimated the true effect sizes due to allelic variation or failed to detect the loci controlling trait variation. These studies demonstrate that epistatic interactions are a common feature of complex traits and thus identifying these interactions is key to understanding their genetic regulation.


Assuntos
Glicemia/metabolismo , Epistasia Genética , Regulação da Expressão Gênica , Homeostase , Alelos , Animais , Metabolismo dos Carboidratos/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...