Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 23: 15330338241229367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38297814

RESUMO

Objective: To investigate the dosimetric effects of using individualized silicone rubber (SR) bolus on the target area and organs at risk (OARs) during postmastectomy radiotherapy (PMRT), as well as evaluate skin acute radiation dermatitis (ARD). Methods: A retrospective study was performed on 30 patients with breast cancer. Each patient was prepared with an individualized SR bolus of 3 mm thickness. Fan-beam computed tomography (FBCT) was performed at the first and second fractions, and then once a week for a total of 5 times. Dosimetric metrics such as homogeneity index (HI), conformity index (CI), skin dose (SD), and OARs including the heart, lungs, and spinal cord were compared between the original plan and the FBCTs. The acute side effects were recorded. Results: In targets' dosimetric metrics, there were no significant differences in Dmean and V105% between planning computed tomography (CT) and actual treatments (P > .05), while the differences in D95%, V95%, HI, and CI were statistically significant (P < .05). In OARs, there were no significant differences between the Dmean, V5, and V20 of the affected lung, V5 of the heart and Dmax of the spinal cord (P > .05) except the V30 of affected lung, which was slightly lower than the planning CT (P < .05). In SD, both Dmax and Dmean in actual treatments were increased than plan A, and the difference was statistically significant (P < .05), while the skin-V20 and skin-V30 has no difference. Among the 30 patients, only one patient had no skin ARD, and 5 patients developed ARD of grade 2, while the remaining 24 patients were grade 1. Conclusion: The OR bolus showed good anastomoses and high interfraction reproducibility with the chest wall, and did not cause deformation during irradiation. It ensured accurate dose delivery of the target and OARs during the treatment, which may increase SD by over 101%. In this study, no cases of grade 3 skin ARD were observed. However, the potential of using OR bolus to reduce grade 1 and 2 skin ARD warrants further investigation with a larger sample size.


Assuntos
Neoplasias da Mama , Dermatite , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Elastômeros de Silicone , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Estudos Retrospectivos , Reprodutibilidade dos Testes , Mastectomia/efeitos adversos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Dermatite/cirurgia , Órgãos em Risco/efeitos da radiação
2.
Med Phys ; 49(10): 6728-6738, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35959736

RESUMO

PURPOSE: Ultra-high dose rate FLASH irradiation (FLASH-IR) has been shown to cause less normal tissue damage compared with conventional irradiation (CONV-IR), this is known as the "FLASH effect." It has attracted immense research interest because its underlying mechanism is scarcely known. The purpose of this study was to determine whether FLASH-IR and CONV-IR induce differential inflammatory cytokine expression using a modified clinical linac. MATERIALS AND METHODS: An Elekta Synergy linac was used to deliver 6 MeV CONV-IR and modified to deliver FLASH-IR. Female FvB mice were randomly assigned to three different groups: a non-irradiated control, CONV-IR, or FLASH-IR. The FLASH-IR beam was produced by single pulses repeated manually with a 20-s interval (Strategy 1), or single-trigger multiple pulses with a 10 ms interval (Strategy 2). Mice were immobilized in the prone position in a custom-designed applicator with Gafchromic films positioned under the body. The prescribed doses for the mice were 6 to 18 Gy and verified using Gafchromic films. Cytokine expression of three pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], interleukin-6 [IL-6]) and one anti-inflammatory cytokine (IL-10) in serum samples and skin tissue were examined within 1 month post-IR. RESULTS: The modified linac delivered radiation at an intra-pulse dose rate of around 1 × 106 Gy/s and a dose per pulse over 2 Gy at a source-to-surface distance (SSD) of 13 to 15 cm. The achieved dose coverage was 90%-105% of the maximum dose within -20 to 20 mm in the X direction and 95% within -30 to 30 mm in the Y direction. The absolute deviations between the prescribed dose and the actual dose were 2.21%, 6.04%, 2.09%, and 2.73% for 6, 9, 12, and 15 Gy as measured by EBT3 films, respectively; and 4.00%, 4.49%, and 2.30% for 10, 14, and 18 Gy as measured by the EBT XD films, respectively. The reductions in the CONV-IR versus the FLASH-IR group were 4.89%, 10.28%, -7.8%, and -22.17% for TNF-α, IFN-γ, IL-6, and IL-10 in the serum on D6, respectively; 37.26%, 67.16%, 56.68%, and -18.95% in the serum on D31, respectively; and 62.67%, 35.65%, 37.75%, and -12.20% for TNF-α, IFN-γ, IL-6, and IL-10 in the skin tissue, respectively. CONCLUSIONS: Ultra-high dose rate electron FLASH caused lower pro-inflammatory cytokine levels in serum and skin tissue which might mediate differential tissue damage between FLASH-IR and CONV-IR.


Assuntos
Interleucina-10 , Fator de Necrose Tumoral alfa , Animais , Elétrons , Feminino , Interferon gama , Interleucina-6 , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...