Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(5): e0236722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36125268

RESUMO

Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gamma-irradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development. IMPORTANCE The target pathogen of this study, Streptococcus pneumoniae, kills over 300,000 children <5 years of age every single year, and is the leading cause of pneumonia-associated mortality globally. While the capsular polysaccharide (CPS)-based vaccine Prevnar13 prevents serious illness caused by 13 serotypes, ongoing Prevnar13 use has driven the emergence of nonincluded serotypes as major causes of infection and disease. To overcome this issue, we have developed a next-generation pneumococcal vaccine conferring serotype-independent protection. This vaccine shows equivalent or superior efficacy to Prevnar13, and performance was heightened when our vaccine was administered with no adjuvant. These findings should be considered for similar vaccines in development, as the benefit of adjuvant is often assumed and its automatic inclusion may be limiting product efficacy, resulting in potential abandonment of viable vaccine candidates, or prolonging their time to clinic.


Assuntos
Anticorpos Antibacterianos , Infecções Pneumocócicas , Camundongos , Coelhos , Animais , Vacinas Pneumocócicas , Streptococcus pneumoniae , Vacinas Conjugadas , Sorogrupo , Infecções Pneumocócicas/prevenção & controle
2.
Immunol Cell Biol ; 97(8): 726-739, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31050022

RESUMO

Existing capsular polysaccharide-based vaccines against pneumococcal disease are highly effective against vaccine-included serotypes, but they are unable to combat serotype replacement. We have developed a novel pneumococcal vaccine that confers serotype-independent protection, and could therefore constitute a "universal" vaccine formulation. This preparation is comprised of whole un-encapsulated pneumococci inactivated with gamma irradiation (γ-PN), and we have previously reported induction of cross-reactive immunity after nonadjuvanted intranasal vaccination. To further enhance vaccine immunogenicity and safety, we modified the pneumococcal vaccine strain to induce a stressed state during growth. Specifically, the substrate binding component of the psaBCA operon for manganese import was mutated to create a pneumococcal surface antigen A (psaA) defective vaccine strain. psaA mutation severely attenuated the growth of the vaccine strain in vitro without negatively affecting pneumococcal morphology, thereby enhancing vaccine safety. In addition, antibodies raised against vaccine preparations based on the modified strain [γ-PN(ΔPsaA)] showed more diversified reactivity to wild-type pneumococcal challenge strains compared to those induced by the original formulation. The modified vaccine also induced comparable protective TH 17 responses in the lung, and conferred greater protection against lethal heterologous pneumococcal challenge. Overall, the current study demonstrates successful refinement of a serotype-independent pneumococcal vaccine candidate to enhance safety and immunogenicity.


Assuntos
Adesinas Bacterianas/imunologia , Lipoproteínas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Adesinas Bacterianas/genética , Administração Intranasal , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Imunogenicidade da Vacina , Lipoproteínas/genética , Pulmão/citologia , Pulmão/imunologia , Camundongos , Mutação , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/efeitos adversos , Vacinas Pneumocócicas/genética , Streptococcus pneumoniae/genética , Células Th17/imunologia , Vacinação/métodos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia
3.
mBio ; 8(1)2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28119473

RESUMO

Communication between bacterial cells is crucial for the coordination of diverse cellular processes that facilitate environmental adaptation and, in the case of pathogenic species, virulence. This is achieved by the secretion and detection of small signaling molecules called autoinducers, a process termed quorum sensing. To date, the only signaling molecule recognized by both Gram-positive and Gram-negative bacteria is autoinducer 2 (AI-2), synthesized by the metabolic enzyme LuxS (S-ribosylhomocysteine lyase) as a by-product of the activated methyl cycle. Homologues of LuxS are ubiquitous in bacteria, suggesting a key role in interspecies, as well as intraspecies, communication. Gram-negative bacteria sense and respond to AI-2 via the Lsr ABC transporter system or by the LuxP/LuxQ phosphorelay system. However, homologues of these systems are absent from Gram-positive bacteria and the AI-2 receptor is unknown. Here we show that in the major human pathogen Streptococcus pneumoniae, sensing of exogenous AI-2 is dependent on FruA, a fructose-specific phosphoenolpyruvate-phosphotransferase system that is highly conserved in Gram-positive pathogens. Importantly, AI-2 signaling via FruA enables the bacterium to utilize galactose as a carbon source and upregulates the Leloir pathway, thereby leading to increased production of capsular polysaccharide and a hypervirulent phenotype. IMPORTANCE: S. pneumoniae is a Gram-positive bacterium frequently carried asymptomatically in the human nasopharynx. However, in a proportion of cases, it can spread to other sites of the body, causing life-threatening diseases that translate into massive global morbidity and mortality. Our data show that AI-2 signaling via FruA promotes the transition of the pneumococcus from colonization to invasion by facilitating the utilization of galactose, the principal sugar available in the upper respiratory tract. AI-2-mediated upregulation of Leloir pathway enzymes results in increased production of capsular polysaccharide and hypervirulence in a murine intranasal challenge model. This identifies the highly conserved FruA phosphotransferase system as a target for new antimicrobials based on the disruption of this generic quorum-sensing system.


Assuntos
Galactose/metabolismo , Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , Lactonas/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Transdução de Sinais , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Cápsulas Bacterianas/metabolismo , Carbono/metabolismo , Modelos Animais de Doenças , Histocitoquímica , Homosserina/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Virulência
4.
Clin Sci (Lond) ; 131(2): 169-180, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27885052

RESUMO

Streptococcus pneumoniae and influenza are the world's foremost bacterial and viral respiratory pathogens. We have previously described a γ-irradiated influenza A virus (γ-FLU) vaccine that provides cross-protective immunity against heterosubtypic infections. More recently, we reported a novel non-adjuvanted γ-irradiated S pneumoniae (γ-PN) vaccine that elicits serotype-independent protection. Considering the clinical synergism of both pathogens, combination of a serotype-independent pneumococcal vaccine with a broad-spectrum influenza vaccine to protect against both infections would have a considerable clinical impact. In the present study, we co-immunized C57BL/6 mice intranasally (IN) with a mixture of γ-PN (whole inactivated cells) and γ-FLU (whole inactivated virions) and examined protective efficacy. Co-immunization enhanced γ-PN vaccine efficacy against virulent pneumococcal challenge, which was dependent on CD4+ T-cell responses. In contrast, vaccination with γ-PN alone, co-immunization enhanced pneumococcal-specific effector T-helper 17 cell (Th17) and Th1 memory cell, promoted development of CD4+ tissue-resident memory (TRM) cells and enhanced Pneumococcus-specific antibody responses. Furthermore, co-immunization elicited significant protection against lethal influenza challenge, as well as against co-infection with both influenza and S pneumoniae. This is the first report showing the synergistic effect of combining whole cell and whole virion vaccines to both S pneumoniae and influenza as a single vaccine to protect against individual and co-infection, without compromising pathogen-specific immunity.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Administração Intranasal , Animais , Formação de Anticorpos , Humanos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/imunologia , Vacinação
5.
Clin Sci (Lond) ; 130(9): 697-710, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26831937

RESUMO

Generating a pneumococcal vaccine that is serotype independent and cost effective remains a global challenge. γ-Irradiation has been used widely to sterilize biological products. It can also be utilized as an inactivation technique to generate whole-cell bacterial and viral vaccines with minimal impact on pathogen structure and antigenic determinants. In the present study, we utilized γ-irradiation to inactivate an un-encapsulated Streptococcus pneumoniae strain Rx1 with an unmarked deletion of the autolysin gene lytA and with the pneumolysin gene ply replaced with an allele encoding a non-toxic pneumolysoid (PdT) (designated γ-PN vaccine). Intranasal vaccination of C57BL/6 mice with γ-PN was shown to elicit serotype-independent protection in lethal challenge models of pneumococcal pneumonia and sepsis. Vaccine efficacy was shown to be reliant on B-cells and interleukin (IL)-17A responses. Interestingly, immunization promoted IL-17 production by innate cells not T helper 17 (Th17) cells. These data are the first to report the development of a non-adjuvanted intranasal γ-irradiated pneumococcal vaccine that generates effective serotype-independent protection, which is mediated by both humoral and innate IL-17 responses.


Assuntos
Linfócitos B/imunologia , Raios gama , Imunidade Inata , Interleucina-17/metabolismo , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/efeitos da radiação , Vacinação , Administração Intranasal , Animais , Linfócitos T CD4-Positivos/imunologia , Imunidade Inata/imunologia , Memória Imunológica , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/complicações , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Sepse/complicações , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle , Sorotipagem , Streptococcus pneumoniae/classificação , Linfócitos T/imunologia , Resultado do Tratamento
6.
Clin Vaccine Immunol ; 22(10): 1079-89, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26245351

RESUMO

Immunization with the pneumococcal proteins pneumolysin (Ply), choline binding protein A (CbpA), or pneumococcal surface protein A (PspA) elicits protective responses against invasive pneumococcal disease in animal models. In this study, we used different mouse models to test the efficacy of a variety of multivalent protein-based vaccines that comprised various combinations of full-length or peptide regions of the immunogens Ply, CbpA, or PspA: Ply toxoid with the L460D substitution (referred to herein as L460D); L460D fused with protective peptide epitopes from CbpA (YPT-L460D-NEEK [YLN]); L460D fused with the CD2 peptide containing the proline-rich region (PRR) of PspA (CD2-L460D); a combination of L460D and H70 (L460D+H70), a slightly larger PspA-derived peptide containing the PRR and the SM1 region; H70+YLN; and other combinations. Each mouse was immunized either intraperitoneally (i.p.) or subcutaneously (s.c.) with three doses (at 2-week intervals) of the various antigen combinations in alum adjuvant and then challenged in mouse models featuring different infection routes with multiple Streptococcus pneumoniae strains. In the i.p. infection sepsis model, H70+YLN consistently provided significant protection against three different challenge strains (serotypes 1, 2, and 6A); the CD2+YLN and H70+L460D combinations also elicited significant protection. Protection against intravenous (i.v.) sepsis (type 3 and 6A challenge strains) was largely dependent on PspA-derived antigen components, and the most protection was elicited by H70 with or without L460D or YLN. In a type 4 intratracheal (i.t.) challenge model that results in progression to meningitis, antigen combinations that contained YLN elicited the strongest protection. Thus, the trivalent antigen combination of H70+YLN elicited the strongest and broadest protection in diverse pneumococcal challenge models.


Assuntos
Proteínas de Bactérias/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Sepse/prevenção & controle , Streptococcus pneumoniae/imunologia , Estreptolisinas/imunologia , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Epitopos/genética , Epitopos/imunologia , Esquemas de Imunização , Imunoglobulina G/sangue , Meningite Pneumocócica/imunologia , Meningite Pneumocócica/microbiologia , Meningite Pneumocócica/prevenção & controle , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/genética , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/prevenção & controle , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Sepse/microbiologia , Streptococcus pneumoniae/classificação , Toxoides/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
7.
Infect Immun ; 83(9): 3526-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099582

RESUMO

Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265-270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Globosídeos/imunologia , Mimetismo Molecular , Triexosilceramidas/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Escherichia coli Shiga Toxigênica
8.
Proc Natl Acad Sci U S A ; 111(49): E5312-20, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422425

RESUMO

The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.


Assuntos
Eritrócitos/metabolismo , Hemólise , Polissacarídeos/química , Estreptolisinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Carboidratos/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citometria de Fluxo , Glicolipídeos/química , Humanos , Antígenos CD15/química , Dados de Sequência Molecular , Mutagênese , Oligossacarídeos/química , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
9.
Infect Immun ; 81(2): 505-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208608

RESUMO

Streptococcus pneumoniae is a diverse species causing invasive as well as localized infections that result in massive global morbidity and mortality. Strains vary markedly in pathogenic potential, but the molecular basis is obscured by the diversity and plasticity of the pneumococcal genome. In the present study, S. pneumoniae serotype 3 blood (n = 12) or ear (n = 13) isolates were multilocus sequence typed (MLST) and assessed for biofilm formation and virulence phenotype. Blood and ear isolates exhibited similar MLST distributions but differed markedly in phenotype. Blood isolates formed robust biofilms only at pH 7.4, which were enhanced in Fe(III)-supplemented medium. Conversely, ear isolates formed biofilms only at pH 6.8, and Fe(III) was inhibitory. Biofilm formation paralleled luxS expression and genetic competence. In a mouse intranasal challenge model, blood isolates did not stably colonize the nasopharynx but spread to the blood; none spread to the ear. Ear isolates colonized the nasopharynx at higher levels and also spread to the ear compartment in a significant proportion of animals; none caused bacteremia. Thus, pneumococci of the same serotype and MLST exhibit distinct phenotypes in accordance with clinical site of isolation, indicative of stable niche adaptation within a clonal lineage.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana/métodos , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Feminino , Compostos Férricos/metabolismo , Genes Bacterianos , Concentração de Íons de Hidrogênio , Camundongos , Nasofaringe/metabolismo , Nasofaringe/microbiologia , Fenótipo , Infecções Pneumocócicas/metabolismo , Sorotipagem/métodos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/patogenicidade , Virulência/genética
10.
Infect Immun ; 79(10): 4122-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21788389

RESUMO

Streptococcus pneumoniae is a leading cause of human diseases such as pneumonia, bacteremia, meningitis, and otitis media. Pneumolysin (Ply) is an important virulence factor of S. pneumoniae and a promising future vaccine target. However, the expansion of clones carrying ply alleles with reduced hemolytic activity has been observed in serotypes associated with outbreaks of invasive disease and includes an allele identified in a highly virulent serotype 1 isolate (ply4496). The virulence of Ply-deficient and ply allelic-replacement derivatives of S. pneumoniae D39 was compared with that of wild-type D39. In addition, the protective immunogenicity of Ply against pneumococci with low versus high hemolytic activity was also investigated. Replacement of D39 ply with ply4496 resulted in a small but statistically significant reduction of virulence. However, both native Ply- and Ply4496-expressing strains were significantly more virulent than a Ply-deficient mutant. While the numbers of both Ply- and Ply4496-expressing isolate cells were higher in the blood than the numbers of Ply-deficient mutant cells, the growth of the Ply4496-expressing strain was superior to that of the wild type in the first 15 h postchallenge. Ply immunization provided protection regardless of the hemolytic activity of the challenge strain. In summary, we show that low-hemolytic-activity Ply alleles contribute to systemic virulence and may provide a survival advantage in the blood. Moreover, pneumococci expressing such alleles remain vulnerable to Ply-based vaccines.


Assuntos
Bacteriemia/microbiologia , Sangue/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/patogenicidade , Estreptolisinas/genética , Sequência de Aminoácidos , Animais , Animais não Endogâmicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Feminino , Hemólise , Humanos , Imunização , Camundongos , Dados de Sequência Molecular , Mutação , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Alinhamento de Sequência , Análise de Sequência de DNA , Streptococcus pneumoniae/imunologia , Estreptolisinas/deficiência , Estreptolisinas/imunologia , Virulência
11.
Vaccine ; 26(34): 4372-8, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18602730

RESUMO

Intramuscular immunization of mice with DNA cocktail vaccines, comprising potential protective antigens P36, P46, NrdF, and P97or P97R1 of Mycoplasma hyopneumoniae, induced strong Th1-polarized immune responses against each antigen, with only P46 eliciting a serum IgG response. Subcutaneous immunization with protein cocktail vaccines, surprisingly, induced both Th1-polarized immune response as well as antibody response whereas mice immunized with DNA cocktail vaccines followed by boosting with protein cocktail vaccines generated strong Th1-polarized and humoral immune responses. P97 was not recognized by serum antibodies from commercial bacterin-immunized mice indicating potential lack of expression of this important antigen in inactivated whole-cell vaccines.


Assuntos
Antígenos de Bactérias/imunologia , Imunização/métodos , Mycoplasma hyopneumoniae/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/imunologia , Feminino , Imunoglobulina G/sangue , Injeções Intramusculares , Subpopulações de Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
12.
J Med Microbiol ; 57(Pt 1): 28-35, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18065664

RESUMO

The immunogenicity and protective efficacy of a DNA vaccine encoding a genetically inactivated S1 domain of pertussis toxin was evaluated using a murine respiratory challenge model of Bordetella pertussis infection. It was found that mice immunized via the intramuscular route elicited a purely cell-mediated immune response to the DNA vaccine, with high levels of gamma interferon (IFN-gamma) and interleukin (IL)-2 detected in the S1-stimulated splenocyte supernatants and no serum IgG. Despite the lack of an antibody response, the lungs of DNA-immunized mice were cleared of B. pertussis at a significantly faster rate compared with mock-immunized mice following an aerosol challenge. To gauge the true potential of this S1 DNA vaccine, the immune response and protective efficacy of the commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccine were included as the gold standard. Immunization with DTaP elicited a typically strong T-helper (Th)2-polarized immune response with significantly higher titres of serum IgG than in the DNA vaccine group, but a relatively weak Th1 response with low levels of IFN-gamma and IL-2 detected in the supernatants of antigen-stimulated splenocytes. DTaP-immunized mice cleared the aerosol challenge more efficiently than DNA-immunized mice, with no detectable pathogen after day 7 post-challenge.


Assuntos
Imunidade Celular , Toxina Pertussis/genética , Vacina contra Coqueluche/administração & dosagem , Vacinas de DNA/administração & dosagem , Coqueluche/prevenção & controle , Animais , Formação de Anticorpos , Imunização , Interferon gama/biossíntese , Interleucina-2/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Toxina Pertussis/imunologia , Vacina contra Coqueluche/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Coqueluche/imunologia
13.
J Med Microbiol ; 55(Pt 7): 923-929, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16772421

RESUMO

The immunogenicity of P97 adhesin repeat region R1 (P97R1) of Mycoplasma hyopneumoniae, an important pathogenesis-associated region of P97, was evaluated in mice as a mucosal vaccine. Mice were immunized orally with attenuated Salmonella typhimurium aroA strain CS332 harbouring a eukaryotic or prokaryotic expression vector encoding P97R1. Local and systemic immune responses were analysed by ELISA on mouse sera, lung washes and splenocyte supernatants following splenocyte stimulation with specific antigens in vitro. Although no P97R1-specific antibody responses were detected in serum and lung washes, significant gamma interferon was produced by P97R1-stimulated splenocytes from mice immunized orally with S. typhimurium aroA harbouring either expression system, indicating induction of a cell-mediated immune response. These results suggested that live bacterial vectors carrying DNA vaccines or expressing heterologous antigens preferentially induce a Th1 response. Surprisingly, however, mice immunized with the vaccine carrier S. typhimurium aroA CS332 induced serum IgG, but not mucosal IgA, against P97R1 or S. typhimurium aroA CS332 whole-cell lysate, emphasizing the importance of assessing the suitability of attenuated S. typhimurium antigen-carrier delivery vectors in the mouse model prior to their evaluation as potential vaccines in the target species, which in this instance was pigs.


Assuntos
Adesinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Mycoplasma hyopneumoniae/imunologia , Pneumonia Suína Micoplasmática/imunologia , Vacinas de DNA/imunologia , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/genética , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mycoplasma hyopneumoniae/genética , Pneumonia Suína Micoplasmática/microbiologia , Pneumonia Suína Micoplasmática/prevenção & controle , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Salmonella typhimurium/genética , Baço/imunologia , Baço/virologia
14.
Vet Microbiol ; 114(3-4): 252-9, 2006 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-16426773

RESUMO

The Mycoplasma hyopneumoniae ribonucleotide reductase R2 subunit (NrdF) gene fragment was cloned into eukaryotic and prokaryotic expression vectors and its immunogenicity evaluated in mice immunized orally with attenuated Salmonella typhimurium aroA CS332 harboring either of the recombinant expression plasmids. We found that NrdF is highly conserved among M. hyopneumoniae strains. The immunogenicity of NrdF was examined by analyzing antibody responses in sera and lung washes, and the cell-mediated immune (CMI) response was assessed by determining the INF-gamma level produced by splenocytes upon in vitro stimulation with NrdF antigen. S. typhimurium expressing NrdF encoded by the prokaryotic expression plasmid (pTrcNrdF) failed to elicit an NrdF-specific serum or secretory antibody response, and IFN-gamma was not produced. Similarly, S. typhimurium carrying the eukaryotic recombinant plasmid encoding NrdF (pcNrdF) did not induce a serum or secretory antibody response, but did elicit significant NrdF-specific IFN-gamma production, indicating induction of a CMI response. However, analysis of immune responses against the live vector S. typhimurium aroA CS332 showed a serum IgG response but no mucosal IgA response in spite of its efficient invasiveness in vitro. In the present study we show that the DNA vaccine encoding the M. hyopneumoniae antigen delivered orally via a live attenuated S. typhimurium aroA can induce a cell-mediated immune response. We also indicate that different live bacterial vaccine carriers may have an influence on the type of the immune response induced.


Assuntos
Proteínas de Bactérias/imunologia , Imunização/veterinária , Mycoplasma hyopneumoniae/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Ribonucleotídeo Redutases/imunologia , Vacinas contra Salmonella/imunologia , Vacinas Tíficas-Paratíficas/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/biossíntese , Feminino , Vetores Genéticos , Imunoglobulina A Secretora/biossíntese , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Mycoplasma hyopneumoniae/patogenicidade , Plasmídeos , Proteínas Recombinantes , Salmonella typhimurium , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...