Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Ethnopharmacol ; 329: 118127, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583728

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shugan Xiaozhi (SGXZ) decoction is a traditional Chinese medicine used for treating nonalcoholic steatohepatitis (NASH). It has been used clinically for over 20 years and proved to be effective; however, the molecular mechanism underlying the effects of SGXZ decoction remains unclear. AIM OF THE STUDY: We analyzed the chemical components, core targets, and molecular mechanisms of SGXZ decoction to improve NASH through network pharmacology and in vivo experiments. MATERIALS AND METHODS: The chemical components, core targets, and related signaling pathways of SGXZ decoction intervention in NASH were predicted using network pharmacology. Molecular docking was performed to verify chemical components and their core targets. The results were validated in the NASH model treated with SGXZ decoction. Mouse liver function was assessed by measuring ALT and AST levels. TC and TG levels were determined to evaluate lipid metabolism, and lipid deposition was assessed via oil red O staining. Mouse liver damage was determined via microscopy following hematoxylin and eosin staining. Liver fibrosis was assessed via Masson staining. Western blot (WB) and immunohistochemical (IHC) analyses were performed to detect inflammation and the expression of apoptosis-related proteins, including IL-1ß, IL-6, IL-18, TNF-α, MCP1, p53, FAS, Caspase-8, Caspase-3, Caspase-9, Bax, Bid, Cytochrome c, Bcl-2, and Bcl-XL. In addition, WB and IHC were used to assess protein expression associated with the TLR4/MyD88/NF-κB pathway. RESULTS: Quercetin, luteolin, kaempferol, naringenin, and nobiletin in SGXZ decoction were effective chemical components in improving NASH, and TNF-α, IL-6, and IL-1ß were the major core targets. Molecular docking indicated that these chemical components and major core targets might interact. KEGG pathway analysis showed that the pathways affected by SGXZ decoction, primarily including apoptosis and TLR4/NF-κB signaling pathways, interfere with NASH. In vivo experiments indicated that SGXZ decoction considerably ameliorated liver damage, fibrosis, and lipid metabolism disorder in MCD-induced NASH mouse models. In addition, WB and IHC verified the underlying molecular mechanisms of SGXZ decoction as predicted via network pharmacology. SGXZ decoction inhibited the activation of apoptosis-related pathways in MCD-induced NASH mice. Moreover, SGXZ decoction suppressed the activation of TLR4/MyD88/NF-κB pathway in MCD-induced NASH mice. CONCLUSION: SGXZ decoction can treat NASH through multiple targets and pathways. These findings provide new insights into the effective treatment of NASH using SGXZ decoction.

3.
J Leukoc Biol ; 115(4): 633-646, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38066571

RESUMO

Oncolytic virotherapy is an innovative approach for cancer treatment. However, recruitment of myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment (TME) after oncolysis-mediated local inflammation leads to tumor resistance to the therapy. Using the murine malignant mesothelioma model, we demonstrated that the in situ vaccinia virotherapy recruited primarily polymorphonuclear MDSCs (PMN-MDSCs) into the TME, where they exhibited strong suppression of cytotoxic T lymphocytes in a reactive oxygen species-dependent way. Single-cell RNA sequencing analysis confirmed the suppressive profile of PMN-MDSCs at the transcriptomic level and identified CXCR2 as a therapeutic target expressed on PMN-MDSCs. Abrogating PMN-MDSC trafficking by CXCR2-specific small molecule inhibitor during the vaccinia virotherapy exhibited enhanced antitumor efficacy in 3 syngeneic cancer models, through increasing CD8+/MDSC ratios in the TME, activating cytotoxic T lymphocytes, and skewing suppressive TME into an antitumor environment. Our results warrant clinical development of CXCR2 inhibitor in combination with oncolytic virotherapy.


Assuntos
Células Supressoras Mieloides , Terapia Viral Oncolítica , Vacínia , Animais , Camundongos , Linhagem Celular Tumoral , Células Supressoras Mieloides/patologia , Linfócitos T Citotóxicos , Microambiente Tumoral , Vacínia/patologia , Vaccinia virus
4.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
5.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986788

RESUMO

A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-ß-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-ß upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-ß induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-ß-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-ß; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.

6.
Biomed Pharmacother ; 168: 115831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939615

RESUMO

BACKGROUND: Nonalcoholic steatohepatitis (NASH) has caused a significant burden on public health care systems, the economy and society. However, there has still been no officially approved pharmacotherapy for NASH. It has been suggested that oxidative stress and mitochondrial dysfunction play vital roles in NASH pathological progression. Shugan Xiaozhi (SG) formula, as a kind of classical herbal formula, was shown to attenuate NASH. PURPOSE: This study aimed to explore the potential mechanisms of SG formula treating NASH. STUDY DESIGN AND METHODS: Ultra-high-performance liquid chromatography-high resolution mass spectrometry combined with bioinformatics analysis was applied to explore the therapeutic targets and main components of SG formula. Moreover, in vivo NASH model was utilized to confirmed the therapeutic effects of SG formula. Molecular docking analysis and further validation experiments were conducted to verify the results of bioinformatics analysis. RESULTS: The in vivo experiments confirmed SG formula significantly attenuated hepatic pathological progression and relieved oxidative stress in high-fat diet (HFD) induced - NASH model. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) combined with bioinformatics analysis expounded the components of SG formula and revealed the mitochondrial regulation mechanism of SG formula treating NASH. Further in vivo experiments validated that SG formula could alleviate oxidative stress by rehabilitating the structure and function of mitochondria, which was strongly related to regulating mitophagy. CONCLUSION: In summary, this study demonstrated that SG formula, which could attenuate NASH by regulating mitochondria and might be a potential pharmacotherapy for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Cromatografia Líquida de Alta Pressão , Mitofagia , Simulação de Acoplamento Molecular , Fígado/metabolismo , Mitocôndrias/patologia , Espectrometria de Massas , Camundongos Endogâmicos C57BL
7.
Biomed Pharmacother ; 168: 115751, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879214

RESUMO

Knee Osteoarthritis (KOA) is an age-related progressive degenerative joint disease, which is featured with pain, joint deformity, and disability. Accumulating evidence indicated oxidative stress plays a crucial role in the occurrence and development of KOA. Curcumin is a polyphenolic compound with significant antioxidant activity among various diseases while catalase (CAT) is an enzyme degrading hydrogen peroxide in treating oxidative diseases. We previously showed that the expression of CAT was low in cartilage. However, the combination of curcumin and CAT in KOA is still elusive. In this study, we demonstrated that the combination of curcumin and CAT has the potential to inhibit the IL1ß-induced chondrocyte apoptosis without cytotoxicity in vitro. Mechanistically, we found that the synergistic application curcumin and CAT not only promotes curcumin's regulation of the NRF2/HO-1 signaling pathway to enhance antioxidant enzyme expression to remove superoxide radicals, but also CAT can further remove downstream hydrogen peroxide which enhances the ability to scavenge reactive oxygen species (ROS). In vivo, studies revealed that combination of curcumin and catalase could better inhibit oxidative stress-induced chondrocyte injury by promoting the expression of ROS scavenging enzymes. In sum, the combination of curcumin and catalase can be used to treat KOA. Thus, combination of curcumin and catalase may act as a novel therapeutic agent to manage KOA and our research gives a rationale for their combined use in the therapeutic of KOA.


Assuntos
Curcumina , Osteoartrite do Joelho , Humanos , Espécies Reativas de Oxigênio/metabolismo , Curcumina/uso terapêutico , Catalase/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Peróxido de Hidrogênio/farmacologia , Condrócitos/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
8.
Waste Manag ; 169: 101-111, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421822

RESUMO

The existence of metallic aluminum in municipal solid waste incineration fly ash (MSWIFA) makes it challenging to recycle MSWIFA into cement materials because expansion occurs in the resultant matrices. Geopolymer-foamed materials (GFMs) are gaining attention in the field of porous materials due to their high-temperature stability, low thermal conductivity and low CO2 emission. This work aimed to utilize MSWIFA as a foaming agent to synthesize GFMs. The physical properties, pore structure, compressive strength and thermal conductivity were analyzed to assess different GFMs which were synthesized with various MSWIFA and stabilizing agent dosages. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis were conducted to characterize the phase transformation of the GFMs. Results showed that when MSWIFA content was increased from 20 to 50%, the porosity of GFMs increased from 63.5 to 73.7%, and bulk density decreased from 890 to 690 kg/m3. The addition of stabilizing agent could trap the foam, refine the cell size, and homogenize the cell size range. With the stabilizing agent increase from 0 to 4%, the porosity increased from 69.9 to 76.8%, and the bulk density decreased from 800 to 620 kg/m3. The thermal conductivity decreased with increasing MSWIFA from 20 to 50%, and stabilizing agent dosage from 0 to 4%. Compared with the collected data from references, a higher compressive strength can be obtained at the same level of thermal conductivity for GFMs synthesized with MSWIFA as a foaming agent. Additionally, the foaming effect of MSWIFA results from the H2 release. The addition of MSWIFA changed both the crystal phase and gel composition, whereas the stabilizing agent dosage had little impact on the phase composition.


Assuntos
Incineração , Resíduos Sólidos , Incineração/métodos , Cinza de Carvão/química , Excipientes , Força Compressiva
9.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333255

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-beta (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel Anoctamin-1 (ANO1) in human lung fibroblasts (HLF) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle alpha-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1 and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate pro-fibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLF results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that (i) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and (ii) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein, but independent of WNK1 kinase activity.

10.
Small ; 19(44): e2303491, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381620

RESUMO

Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.

11.
Sci Total Environ ; 878: 163187, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001673

RESUMO

The relationship between glomalin-related soil protein (GRSP) and soil aggregation has been a hot topic of research for its close link to soil stability and quality. However, the short-term cultivation of Eucalyptus poses serious threats to soil stability and nutrient stocks, and the effects of GRSP on soil aggregate stability and macronutrient accumulation remain unclear. The aim is to clarify the potential mechanisms affecting soil aggregate stability and macronutrient accumulation in short-term Eucalyptus plantations. Five Eucalyptus urophylla × Eucalyptus grandis plantations with different cultivation periods (1-5 years) in this study were investigated, and a native evergreen broadleaf forest (0 year) was selected as control. The mean weight diameter index increased in the first 3 years and then significantly decreased during 5 years cultivation of Eucalyptus. Soil organic carbon (SOC) and total nitrogen also decreased after planting Eucalyptus for 3 years, but variation in total phosphorus was not obvious. The relative abundance of Glomeraceae and Claroideoglomeraceae decreased in the 5-year-old Eucalyptus plantations and was positively correlated with GRSP content. In pathway modeling, nutrient-acquisition enzyme activities positively affected GRSP and macronutrient content. Total GRSP (T-GRSP) had higher total effects than easily extractable GRSP on soil aggregate stability, and positively correlated with SOC in macroaggregates. Both T-GRSP and SOC had positive and direct effects on soil aggregate stability. Variance partitioning analysis further explained the contribution of GRSP and SOC to aggregate stability, particularly in >2 and 2-0.25 mm macroaggregates. Our results suggested that GRSP was directly associated with SOC content and soil aggregate stability, and was a potential key factor affecting soil aggregate stability in Eucalyptus plantations. Improving T-GRSP and SOC are efficient approaches for preventing the gradual deterioration of soil aggregate stability. Short-term cultivation should be carefully used in Eucalyptus plantations, and a new cultivation period is needed.


Assuntos
Eucalyptus , Glomeromycota , Solo , Proteínas Fúngicas/metabolismo , Carbono , Glicoproteínas/metabolismo , Nutrientes
12.
Life Sci ; 322: 121326, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639053

RESUMO

AIMS: Eucommia is the tree bark of Eucommia japonica, family Eucommiaceae. In traditional Chinese medicine, Eucommia is often used to treat osteoporosis. Quercetin (QUE), a major flavonoid extract of Eucommia japonica, has been reported to have anti-osteoporosis effects. However, there are no studies reporting the mechanism of QUE in the treatment of iron overload-induced osteoporosis. This study set out to investigate the therapeutic effects of QUE against iron overload-induced bone loss and its potential molecular mechanisms. MATERIALS AND METHODS: In vitro, MC3T3-E1 cells were used to study the effects of QUE on osteogenic differentiation, anti-apoptosis and anti-oxidative stress damage in an iron overload environment (FAC 200 µM). In vivo, we constructed an iron overload mouse model by injecting iron dextrose intraperitoneally and assessed the osteoprotective effects of QUE by Micro-CT and histological analysis. KEY FINDINGS: In vitro, we found that QUE increased the ALP activity of MC3T3-E1 cells in iron overload environment, promoted the formation of bone mineralized nodules and upregulated the expression of Runx2 and Osterix. In addition, QUE was able to reduce FAC-induced apoptosis and ROS production, down-regulated the expression of Caspase3 and Bax, and up-regulated the expression of Bcl-2. In further studies, we found that QUE activated the Nrf2/HO-1 signaling pathway and attenuated FAC-induced oxidative stress damage. The results of the in vivo study showed that QUE was able to reduce iron deposition induced by iron dextrose and attenuate bone loss. SIGNIFICANCE: Our results suggested that QUE protects against iron overload-induced osteoporosis by activating the Nrf2/HO-1 signaling pathway.


Assuntos
Sobrecarga de Ferro , Osteoporose , Animais , Camundongos , Glucose/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Heme Oxigenase-1/metabolismo
13.
Small ; 19(9): e2205920, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36521932

RESUMO

BaTiO3 octahedra, edge-, and corner-truncated cubes, and cubes with four tunable sizes from 132 to 438 nm are synthesized by a solvothermal growth approach. Acetic acid treatment can cleanly remove BaCO3 impurity. Rietveld refinement of X-ray diffraction patterns and Raman spectra help to confirm the particles have a tetragonal crystal structure. The crystals also exhibit size- and facet-dependent bandgap shifts. BaTiO3 octahedra show larger piezoelectric, ferroelectric, and pyroelectric effects than truncated cubes and cubes. The measured dielectric constant differences should be associated with their various facet-dependent behaviors. Piezoelectric nanogenerators fabricated from BaTiO3 octahedra consistently show the best performance than those containing truncated cubes and cubes. In particular, a nanogenerator with 30 wt.%-incorporated octahedra displays an open-circuit voltage of 23 V and short-circuit current of 324 nA. The device performance is also highly stable. The maximum output power reaches 3.9 µW at 60 MΩ. The fabricated nanogenerator can provide sufficient electricity to power light-emitting diodes. This work further demonstrates that various physical properties of semiconductor crystals show surface dependence.

14.
Life Sci ; 312: 121092, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279968

RESUMO

BACKGROUND: Metformin (MET) is widely used as a first-line hypoglycemic agent for the treatment of type 2 diabetes mellitus (T2DM) and was also confirmed to have a therapeutic effect on type 2 diabetic osteoporosis (T2DOP). However, the potential mechanisms of MET in the treatment of T2DOP are unclear. OBJECTIVE: To clarify the effect of MET in T2DOP and to explore the potential mechanism of MET in the treatment of T2DOP. METHODS: In vitro, we used MC3T3-E1 cells to study the effects of MET on osteogenic differentiation and anti-oxidative stress injury in a high glucose (Glucose 25 mM) environment. In vivo, we directly used db/db mice as a T2DOP model and assessed the osteoprotective effects of MET by Micro CT and histological analysis. RESULTS: In vitro, we found that MET increased ALP activity in MC3T3-E1 cells in a high-glucose environment, promoted the formation of bone mineralized nodules, and upregulated the expression of the osteogenesis-related transcription factors RUNX2, Osterix, and COL1A1-related genes. In addition, MET was able to reduce high glucose-induced reactive oxygen species (ROS) production. In studies on the underlying mechanisms, we found that MET activated the Nrf2/HO-1 signaling pathway and alleviated high-glucose-induced oxidative stress injury. In vivo results showed that MET reduced bone loss and bone microarchitecture destruction in db/db mice. CONCLUSION: Our results suggest that MET can activate the Nrf2/HO-1 signaling pathway to regulate the inhibition of osteogenic differentiation induced by high glucose thereby protecting T2DOP.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Osteoporose , Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Heme Oxigenase-1/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos , Osteogênese , Osteoporose/metabolismo , Estresse Oxidativo , Transdução de Sinais
15.
Emerg Microbes Infect ; 12(1): 2146538, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36354024

RESUMO

ABSTRACTIncreasing spread by SARS-CoV-2 Omicron variants challenges existing vaccines and broadly reactive neutralizing antibodies (bNAbs) against COVID-19. Here we determine the diversity, potency, breadth and structural insights of bNAbs derived from memory B cells of BNT162b2-vaccinee after homogeneous Omicron BA.1 breakthrough infection. The infection activates diverse memory B cell clonotypes for generating potent class I/II and III bNAbs with new epitopes mapped to the receptor-binding domain (RBD). The top eight bNAbs neutralize wildtype and BA.1 potently but display divergent IgH/IgL sequences and neuralization profiles against other variants of concern (VOCs). Two of them (P2D9 and P3E6) belonging to class III NAbs display comparable potency against BA.4/BA.5, although structural analysis reveals distinct modes of action. P3E6 neutralizes all variants tested through a unique bivalent interaction with two RBDs. Our findings provide new insights into hybrid immunity on BNT162b2-induced diverse memory B cells in response to Omicron breakthrough infection for generating diverse bNAbs with distinct structural basis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Amplamente Neutralizantes , Vacina BNT162 , Infecções Irruptivas , Imunidade Adaptativa , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
16.
Chinese Journal of School Health ; (12): 1537-1541, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-997223

RESUMO

Objective@#To explore the relationship between isotemporal substitution of 10 min/d of vigorous physical activity (VPA), moderate physical activity (MPA), walking, sedentary behavior (SB) and sleep (SLP) and depression among vocational school students with different duration of moderate-to-vigorous physical activity (MVPA), so as to provide time allocation suggestions for reducing depression levels.@*Methods@#The convenient cluster sampling method was adopted to conduct a questionnaire survey among 8 149 grade one to grade three students in 14 vocational schools in Shanghai and Jiangsu Province from December 2021 to January 2022. According to whether the MVPA reached 60 min/d, the vocational school students were divided into the MVPA standard group and the MVPA non-standard group, and the isotemporal substitution model was used for analysis.@*Results@#About 19.81% of students were in the MVPA standard group. In the MVPA non-standard group, substituting MPA for all other studied behaviors and substituting SLP for walking and SB were negatively correlated with depression ( β =-0.78, -0.90, -0.88, -0.83; -0.07 , -0.05, P <0.05), and the association of MPA substitution was much greater than that of SLP substitution. In the MVPA standard group, replacing VPA, walking and SB with SLP were all negatively associated with depression ( β =-0.23, -0.12, -0.10 ), whereas replacing MPA, SB and SLP with VPA was all positively associated with depression ( β =0.15, 0.13, 0.23) ( P <0.05).@*Conclusion@#The MVPA level of vocational school students is low. The effects of isotemporal substitution for VPA and MPA are different when MVPA duration is up to standard and when MVPA duration is not up to standard. Appropriate time allocation suggestions should be provided based on the characteristics of adolescents with different MVPA durations.

17.
Chinese Journal of School Health ; (12): 219-223, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-964418

RESUMO

Objective@#Develop a nutrition health educational guidance outline for primary and secondary school students which is adapted to the characteristics of Shanghai and meets the cognitive level of students at different levels, so as to provide a reference for planning the content and target of nutrition health education among students of different school stages.@*Methods@#Through literature search and qualitative interviews, the framework of nutrition health education for primary and secondary school students in Shanghai was developed, and 21 experts in the fields of nutrition, school health and health education were invitied to conduct a Delphi consultation, and determined the content of nutrition and health education for students in each school section based on the consultation results.@*Results@#The recall rate for both rounds of consultation was 100%, the degree of expert authority was 0.74 and 0.89 , and the coordination coefficients were 0.31 and 0.33( P <0.01), suggesting high credibility of expert opinion. The resulting guidance outline included 2 first level entries, 6 second level entries, 60 third level entries and corresponding entry explanations. The 2 first level entries were rational nutrition and food safety; the 6 second level entries were food and nutrients, balanced diet, good eating habits, nutritional practices, good hygiene habits and food borne diseases; the 60 third level entries needed to be studied in Level 1 were 24, Level 2 were 41, Level 3 were 55, and Level 4 were 59.@*Conclusion@#The nutrition health educational guidance outline for primary and secondary school students in Shanghai developed in this study focuses on key nutrition knowledge, rational dietary behaviors and nutrition practice skills, which can provide a reference and basis for the phased implementation of nutrition health education in primary and secondary schools.

18.
Front Pharmacol ; 13: 990087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313316

RESUMO

We aimed to investigate the preventive effect of high mobility group box 1 (HMGB1)-A box and the mechanism by which it alleviates inflammatory injury in acute liver failure (ALF) by inhibiting the extracellular release of HMGB1. BALB/c mice were intraperitoneally (i.p.) administered LPS/D-GalN to establish an ALF mouse model. HMGB1-A box was administered (i.p.) 1 h before establishing the ALF mouse model. The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules, the proinflammatory cytokines TNF-α, IL-1ß, and IL-6 and COX-2 were measured in the liver tissue and/or serum by Immunohistochemistry, Western blotting and Enzyme-linked immunosorbent assay (ELISA). The levels of extracellularly released HMGB1, TLR-4/NF-κB signaling molecules and proinflammatory cytokines were measured in Huh7 cells as well as LPS- and/or HMGB1-A box treatment by confocal microscopy, Western blotting and ELISA. In the ALF mouse model, the levels of HMGB1 were significantly increased both in the liver and serum, TLR-4/NF-κB signaling molecules and proinflammatory cytokines also was upregulated. Notably, HMGB1-A box could reverse these changes. HMGB1-A box could also cause these changes in LPS-induced Huh7 cells. HMGB1-A box played a protective role by inhibiting inflammatory liver injury via the regulation of HMGB1/TLR-4/NF-κB signaling in the LPS/D-GaIN-induced ALF mouse model, which may be related to inhibiting the extracellular release of HMGB1.

19.
Cancer Sci ; 113(10): 3405-3416, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35879596

RESUMO

Most breast cancer-related deaths are caused by metastasis in vital organs including the lungs. Development of supportive metastatic microenvironments, referred to as premetastatic niches (PMNs), in certain distant organs before arrival of metastatic cells, is critical in metastasis. However, the mechanisms of PMN formation are not fully clear. Here, we demonstrated that chemoattractant C-C motif chemokine ligand 2 (CCL2) could be stimulated by heat shock protein 60 (HSP60) on the surface of murine 4 T1 breast cancer cell-released LC3+ extracellular vesicles (LC3+ EVs) via the TLR2-MyD88-NF-κB signal cascade in lung fibroblasts, which subsequently promoted lung PMN formation through recruiting monocytes and suppressing T cell function. Consistently, reduction of LC3+ EV release or HSP60 level or neutralization of CCL2 markedly attenuated PMN formation and lung metastasis. Furthermore, the number of circulating LC3+ EVs and HSP60 level on LC3+ EVs in the plasma of breast cancer patients were positively correlated with disease progression and lung metastasis, which might have potential value as biomarkers of lung metastasis in breast cancer patients (AUC = 0.898, 0.694, respectively). These findings illuminate a novel mechanism of PMN formation and might provide therapeutic targets for anti-metastasis therapy for patients with breast cancer.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Neoplasias Pulmonares , Animais , Neoplasias da Mama/patologia , Chaperonina 60/metabolismo , Fatores Quimiotáticos/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Ligantes , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Associadas aos Microtúbulos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Metástase Neoplásica/patologia , Receptor 2 Toll-Like , Microambiente Tumoral
20.
Nat Commun ; 13(1): 3589, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739114

RESUMO

The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variants have posed great challenges to the efficacy of current vaccines and antibody immunotherapy. Here, we screen 34 BNT162b2-vaccinees and isolate a public broadly neutralizing antibody ZCB11 derived from the IGHV1-58 family. ZCB11 targets viral receptor-binding domain specifically and neutralizes all SARS-CoV-2 variants of concern, especially with great potency against authentic Omicron and Delta variants. Pseudovirus-based mapping of 57 naturally occurred spike mutations or deletions reveals that S371L results in 11-fold neutralization resistance, but it is rescued by compensating mutations in Omicron variants. Cryo-EM analysis demonstrates that ZCB11 heavy chain predominantly interacts with Omicron spike trimer with receptor-binding domain in up conformation blocking ACE2 binding. In addition, prophylactic or therapeutic ZCB11 administration protects lung infection against Omicron viral challenge in golden Syrian hamsters. These results suggest that vaccine-induced ZCB11 is a promising broadly neutralizing antibody for biomedical interventions against pandemic SARS-CoV-2.


Assuntos
Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19 , Animais , Anticorpos Antivirais/imunologia , Vacina BNT162 , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/prevenção & controle , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...