Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Elife ; 132024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995840

RESUMO

Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Proteínas de Ligação a RNA , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , NF-kappa B/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Processamento Alternativo , Metástase Neoplásica , Transdução de Sinais , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos
2.
Cell Death Discov ; 10(1): 249, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782895

RESUMO

Multiple gene abnormalities are major drivers of tumorigenesis. NF-κB p65 overactivation and cGAS silencing are important triggers and genetic defects that accelerate tumorigenesis. However, the simultaneous correction of NF-κB p65 and cGAS abnormalities remains to be further explored. Here, we propose a novel Induced Dual-Target Rebalance (IDTR) strategy for simultaneously correcting defects in cGAS and NF-κB p65. By using our IDTR approach, we showed for the first time that oncolytic adenovirus H101 could reactivate silenced cGAS, while silencing GAU1 long noncoding RNA (lncRNA) inhibited NF-κB p65 overactivation, resulting in efficient in vitro and in vivo antitumor efficacy in colorectal tumors. Intriguingly, we further demonstrated that oncolytic adenoviruses reactivated cGAS by promoting H3K4 trimethylation of the cGAS promoter. In addition, silencing GAU1 using antisense oligonucleotides significantly reduced H3K27 acetylation at the NF-κB p65 promoter and inhibited NF-κB p65 transcription. Our study revealed an aberrant therapeutic mechanism underlying two tumor defects, cGAS and NF-κB p65, and provided an alternative IDTR approach based on oncolytic adenovirus and antisense oligonucleotides for efficient therapeutic efficacy in tumors.

3.
Cancer Lett ; 596: 216988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797234

RESUMO

Type I interferons exhibit anti-proliferative and anti-cancer activities, but their detailed regulatory mechanisms in cancer have not been fully elucidated yet. RNA binding proteins are master orchestrators of gene regulation, which are closely related to tumor progression. Here we show that the upregulated RNA binding protein RBM45 correlates with poor prognosis in breast cancer. Depletion of RBM45 suppresses breast cancer progression both in cultured cells and xenograft mouse models. Mechanistically, RBM45 ablation inhibits breast cancer progression through regulating type I interferon signaling, particularly by elevating IFN-ß production. Importantly, RBM45 recruits TRIM28 to IRF7 and stimulates its SUMOylation, thereby repressing IFNB1 transcription. Loss of RBM45 reduced the SUMOylation of IRF7 by reducing the interaction between TRIM28 and IRF7 to promote IFNB1 transcription, leading to the inhibition of breast cancer progression. Taken together, our finding uncovers a vital role of RBM45 in modulating type I interferon signaling and cancer aggressive progression, implicating RBM45 as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator Regulador 7 de Interferon , Proteínas de Ligação a RNA , Sumoilação , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Transcrição Gênica , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/genética , Transdução de Sinais , Camundongos Nus , Proliferação de Células , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458543

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the most frequent subtype of head and neck cancer, generally with a poor prognosis and limited therapeutic options due to its highly heterogeneous malignancy. In this study, we screened functional splicing regulatory RNA binding proteins (RBPs) that were closely related with the prognosis of HNSCC patients and showed significant expression differences between HNSCC tumors and normal tissues. Based on this finding, we chose six candidate genes (HNRNPC, ZCRB1, RBM12B, SF3A2, SF3B3, and SRSF11) to generate a prognostic prediction model and validated the accuracy of the prognostic model for predicting patient survival outcomes. We found that the risk score predicted by our model can serve as an independent prognostic predictor. Notably, HNSCC tumors showing higher expression of SF3B3, HNRNPC, or ZCRB1 possessed higher risk scores in the discovered prediction model. The investigation of the underlying mechanism validated that knockdown of SF3B3, HNRNPC, and ZCRB1 separately induced a substantial impairment of HNSCC cell survival. Conversely, overexpression of each of the three genes promoted tumor cellular proliferation. High throughput RNA sequencing analysis revealed that changes in the expression of SF3B3 and HNRNPC remarkably affected alternative splicing of genes related to cell cycle regulation, whereas the depletion of ZCRB1 contributed to aberrant splicing events involving in DNA damage response. In addition, the prognostic prediction model's risk score was demonstrated to be related with the immune infiltration score. Particularly, SF3B3 has a negative correlation with CD8A expression. Therefore, our findings provide promising prognosis predictors and potential therapeutic targets for better treatment efficacy of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Oncogenes , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Processamento de RNA/genética , Processamento Alternativo , Neoplasias de Cabeça e Pescoço/genética
5.
Genes Dev ; 38(3-4): 168-188, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38479840

RESUMO

CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.


Assuntos
Cromatina , Desenvolvimento Embrionário , Animais , Camundongos , Sítios de Ligação , Blastocisto/metabolismo , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Mamíferos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Zigoto/metabolismo
6.
Adv Sci (Weinh) ; 11(15): e2307122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342601

RESUMO

Metastasis is the leading cause for the high mortality of lung cancer, however, effective anti-metastatic drugs are still limited. Here it is reported that the RNA-binding protein RBMS1 is positively associated with increased lymph node metastasis in non-small cell lung cancer (NSCLC). Depletion of RBMS1 suppresses cancer cell migration and invasion in vitro and inhibits cancer cell metastasis in vivo. Mechanistically, RBMS1 interacts with YTHDF1 to promote the translation of S100P, thereby accelerating NSCLC cell metastasis. The RRM2 motif of RBMS1 and the YTH domain of YTHDF1 are required for the binding of RBMS1 and YTHDF1. RBMS1 ablation inhibits the translation of S100P and suppresses tumor metastasis. Targeting RBMS1 with NTP, a small molecular chemical inhibitor of RBMS1, attenuates tumor metastasis in a mouse lung metastasis model. Correlation studies in lung cancer patients further validate the clinical relevance of the findings. Collectively, the study provides insight into the molecular mechanism by which RBMS1 promotes NSCLC metastasis and offers a therapeutic strategy for metastatic NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Neoplasias/metabolismo
7.
BMC Genomics ; 25(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166656

RESUMO

BACKGROUND: TCP proteins are plant specific transcription factors that play important roles in plant growth and development. Despite the known significance of these transcription factors in general plant development, their specific role in fruit growth remains largely uncharted. Therefore, this study explores the potential role of TCP transcription factors in the growth and development of sweet cherry fruits. RESULTS: Thirteen members of the PavTCP family were identified within the sweet cherry plant, with two, PavTCP1 and PavTCP4, found to contain potential target sites for Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. Analyses of cis-acting elements and Arabidopsis homology prediction analyses that the PavTCP family comprises many light-responsive elements. Homologs of PavTCP1 and PavTCP3 in Arabidopsis TCP proteins were found to be crucial to light responses. Shading experiments showed distinct correlation patterns between PavTCP1, 2, and 3 and total anthocyanins, soluble sugars, and soluble solids in sweet cherry fruits. These observations suggest that these genes may contribute significantly to sweet cherry light responses. In particular, PavTCP1 could play a key role, potentially mediated through Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. CONCLUSION: This study is the first to unveil the potential function of TCP transcription factors in the light responses of sweet cherry fruits, paving the way for future investigations into the role of this transcription factor family in plant fruit development.


Assuntos
Arabidopsis , Prunus avium , Prunus avium/genética , Frutas , Arabidopsis/genética , Arabidopsis/metabolismo , Antocianinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMJ Open ; 13(11): e075433, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914298

RESUMO

OBJECTIVES: Intensive care unit (ICU) dying patients are the most important source of organ donation. This study explores the reasons affecting organ donation in the Chinese sociocultural context from the perspectives of coordinators and physicians, and further seeks countermeasures to alleviate the shortage of organs. DESIGN AND SETTING: Semistructured interviews conducted in a large tertiary hospital in China. PARTICIPANTS AND METHOD: 15 respondents (including 8 organ coordinators and 7 ICU physicians) were interviewed. Participants were invited to describe the factors that influence organ donation and the underlying reasons behind it. Bronfenbrenner's socioecological system model was used as theoretical support to construct a theoretical model of the factors influencing organ donation. Respondents participated in semistructured qualitative interviews that were audio-recorded and transcribed. The relevant data were analysed using thematic analysis. RESULTS: Four themes that influenced organ donation were identified including the influence of the deceased person's attributes, immediate family members, surrounding people and the environment, and the social-level factors. In addition, we obtained four strategies from the interviews to improve the organ shortage to ameliorate the current supply-demand imbalance in organ donation. These include multilevel publicity, relevant policy support, increasing other forms of supply and reducing organ demand. CONCLUSIONS: Factors affecting organ donation after the death of a Chinese citizen include the personal characteristics of the donor, the decisions of family members such as immediate family members and the indirect influence of surrounding people such as collateral family members, in addition to factors related to the humanistic environment, religious beliefs and social opinion.


Assuntos
Médicos , Obtenção de Tecidos e Órgãos , Humanos , Doadores de Tecidos , China , Família , Unidades de Terapia Intensiva , Tomada de Decisões
9.
Front Plant Sci ; 14: 1238624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662172

RESUMO

Anthocyanins exist widely in various plant tissues and organs, and they play an important role in plant reproduction, disease resistance, stress resistance, and protection of human vision. Most fruit anthocyanins can be induced to accumulate by light. Here, we shaded the "Hong Deng" sweet cherry and performed an integrated analysis of its transcriptome and metabolome to explore the role of light in anthocyanin accumulation. The total anthocyanin content of the fruit and two of its anthocyanin components were significantly reduced after the shading. Transcriptome and metabolomics analysis revealed that PAL, 4CL, HCT, ANS and other structural genes of the anthocyanin pathway and cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, and other metabolites were significantly affected by shading. Weighted total gene network analysis and correlation analysis showed that the upstream and middle structural genes 4CL2, 4CL3, and HCT2 of anthocyanin biosynthesis may be the key genes affecting the anthocyanin content variations in fruits after light shading. Their expression levels may be regulated by transcription factors such as LBD, ERF4, NAC2, NAC3, FKF1, LHY, RVE1, and RVE2. This study revealed for the first time the possible role of LBD, FKF1, and other transcription factors in the light-induced anthocyanin accumulation of sweet cherry, thereby laying a preliminary foundation for further research on the role of light in anthocyanin accumulation of deep red fruit varieties and the genetic breeding of sweet cherry.

10.
RSC Adv ; 13(37): 25930-25938, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664206

RESUMO

The barrier membranes of guided bone regeneration (GBR) have been widely used in clinical medicine to repair bone defects. However, the unmatched mechanical strength, unsuitable degradation rates, and insufficient regeneration potential limit the application of the current barrier membranes. Here, amorphous calcium phosphate-carboxylated chitosan-polyvinyl alcohol (ACP-CCS-PVA) composite membranes are fabricated by freeze-thaw cycles, in which the ATP-stabilized ACP nanoparticles are uniformly distributed throughout the membranes. The mechanical performance and osteogenic properties are significantly improved by the ACP incorporated into the CCS-PVA system, but excess ACP would suppress cell proliferation and osteogenic differentiation. Our work highlights the pivotal role of ACP in GBR and provides insight into the need for biomaterial fabrication to balance mechanical strength and mineral content.

11.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188948, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394019

RESUMO

The human genome is intertwined, folded, condensed, and gradually constitutes the 3D architecture, thereby affecting transcription and widely involving in tumorigenesis. Incidence and mortality rates for orphan cancers increase due to poor early diagnosis and lack of effective medical treatments, which are now getting attention. In-depth understanding in tumorigenesis has fast-tracked over the last decade, however, the further role and mechanism of 3D genome organization in variant orphan tumorigenesis remains to be fully understood. We summarize for the first time that higher-order genome organization can provide novel insights into the occurrence mechanisms of orphan cancers, and discuss probable future research directions for drug development and anti-tumor therapies.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Genoma Humano , Carcinogênese/genética
12.
Front Cell Infect Microbiol ; 13: 1187831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333850

RESUMO

The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection.


Assuntos
Micoses , Animais , Humanos , Micoses/tratamento farmacológico , Fungos , Simbiose , Intestinos , Bactérias , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mamíferos
13.
Virulence ; 14(1): 2230009, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367101

RESUMO

Candidiasis caused by Candida albicans infection has long been a serious human health problem. The pathogenicity of C. albicans is mainly due to its virulence factors, which are novel targets of antifungal drugs for low risk of resistance development. In this study, we identified a maleimide compound [1-(4-methoxyphenyl)-1hydro-pyrrole-2,5-dione, MPD] that exerts effective anti-virulence activity. It could inhibit the process of adhesion, filamentation, and biofilm formation in C. albicans. In addition, it exhibited low cytotoxicity, hemolytic activity, and drug resistance development. Moreover, in Galleria mellonella-C. albicans (in vivo) infection model, the survival time of infected larvae was significantly prolonged under the treatment of MPD. Further, mechanism research revealed that MPD increased farnesol secretion by upregulating the expression of Dpp3. The increased farnesol inhibited the activity of Cdc35, which then decreased the intracellular cAMP content resulting in the inhibition of virulence factors via the Ras1-cAMP-Efg1 pathway. In all, this study evaluated the inhibitory effect of MPD on various virulence factors of C. albicans and identified the underlying mechanisms. This suggests a potential application of MPD to overcome fungal infections in clinics.


Assuntos
Candida albicans , Candidíase , Animais , Humanos , Candida albicans/metabolismo , Fatores de Virulência/metabolismo , Farneseno Álcool/farmacologia , Candidíase/microbiologia , Antifúngicos/uso terapêutico , Maleimidas/metabolismo , Maleimidas/farmacologia , Maleimidas/uso terapêutico , Biofilmes , Hifas
14.
Cell Death Differ ; 30(7): 1757-1770, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173391

RESUMO

The ubiquitin-proteasome system governs a wide spectrum of cellular events and offers therapeutic opportunities for pharmacological intervention in cancer treatment. Renal clear cell carcinoma represents the predominant histological subtype and accounts for the majority of cancer death related to kidney malignancies. Through a systematic survey in the association of human ubiquitin-specific proteases with patient prognosis of renal clear cell carcinoma and subsequent phenotypic validation, we uncovered the tumor-promoting role of USP35. Biochemical characterizations confirmed the stabilizing effects of USP35 towards multiple members of the IAP family in an enzymatic activity-dependent manner. USP35 silencing led to reduced expression levels of IAP proteins, which were accompanied with increased cellular apoptosis. Further transcriptomic analysis revealed that USP35 knockdown affected the expression levels of NRF2 downstream transcripts, which were conferred by compromised NRF2 abundance. USP35 functions to maintain NRF2 levels by catalyzing its deubiquitylation and thus antagonizing degradation. NRF2 reduction imposed by USP35 silencing rendered renal clear cell carcinoma cells increased sensitivity to ferroptosis induction. Finally, induced USP35 knockdown markedly attenuated xenograft formation of renal clear cell carcinoma in nude mice. Hence, our findings reveal a number of USP35 substrates and uncover the protecting roles of USP35 against both apoptosis and ferroptosis in renal clear cell carcinoma.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Camundongos Nus , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Apoptose , Linhagem Celular Tumoral , Endopeptidases
15.
Signal Transduct Target Ther ; 8(1): 159, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37080995

RESUMO

Cellular senescence provides a protective barrier against tumorigenesis in precancerous or normal tissues upon distinct stressors. However, the detailed mechanisms by which tumor cells evade premature senescence to malignant progression remain largely elusive. Here we reported that RBM4 adversely impacted cellular senescence to favor glutamine-dependent survival of esophageal squamous cell carcinoma (ESCC) cells by dictating the activity of LKB1, a critical governor of cancer metabolism. The level of RBM4 was specifically elevated in ESCC compared to normal tissues, and RBM4 overexpression promoted the malignant phenotype. RBM4 contributed to overcome H-RAS- or doxorubicin-induced senescence, while its depletion caused P27-dependent senescence and proliferation arrest by activating LKB1-AMPK-mTOR cascade. Mechanistically, RBM4 competitively bound LKB1 to disrupt the LKB1/STRAD/MO25 heterotrimeric complex, subsequently recruiting the E3 ligase TRIM26 to LKB1, promoting LKB1 ubiquitination and degradation in nucleus. Therefore, such molecular process leads to bypassing senescence and sustaining cell proliferation through the activation of glutamine metabolism. Clinically, the ESCC patients with high RBM4 and low LKB1 have significantly worse overall survival than those with low RBM4 and high LKB1. The RBM4 high/LKB1 low expression confers increased sensitivity of ESCC cells to glutaminase inhibitor CB-839, providing a novel insight into mechanisms underlying the glutamine-dependency to improve the efficacy of glutamine inhibitors in ESCC therapeutics.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Senescência Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Glutamina/genética , Glutamina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Microb Pathog ; 178: 106056, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893904

RESUMO

As an obligate intracellular pathogen, Chlamydia trachomatis assumes various strategies to inhibit host cells apoptosis, thereby providing a suitable intracellular environment to ensure completion of the development cycle. In the current study, we revealed that Pgp3 protein, one of eight plasmid proteins of C. trachomatis that has been illustrated as the key virulence factor, increased HO-1 expression to suppress apoptosis, and downregulation of HO-1 with siRNA-HO-1 failed to exert anti-apoptosis activity of Pgp3 protein. Moreover, treatment of PI3K/Akt pathway inhibitor and Nrf2 inhibitor evidently reduced HO-1 expression and Nrf2 nuclear translocation was blocked by PI3K/Akt pathway inhibitor. These findings highlight that induction of HO-1 expression by Pgp3 protein is probably due to regulation of Nrf2 nuclear translocation activated by PI3K/Akt pathway, which provide clues on how C. trachomatis adjusts apoptosis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Chlamydia trachomatis , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo
17.
Eur J Oral Sci ; 131(3): e12928, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931874

RESUMO

In this study, the synergistic effect of glutaraldehyde-cross-linking and remineralization on the strength and durability of resin-dentin bonds was investigated. Dentin surfaces were etched with 35% phosphoric acid. The control specimens were bonded with Adper Single Bond 2 using wet bonding without pretreatment. The experimental specimens were pretreated with 5% (v/v) glutaraldehyde solution for 3 min and placed in a remineralizing solution for 0, 12, and 24 h, followed by dry bonding. After performing composite build-ups on the specimens, they were longitudinally sectioned, immediately, and after aging for 3 h with sodium hypochlorite (NaOCl), to evaluate microtensile bond strength (µTBS). The cross-linked specimens exhibited µTBS values comparable with those of the control group, but the µTBS decreased significantly after NaOCl aging. The cross-linked dentin remineralized for 24 h exhibited an increase in µTBS. After aging in NaOCl, the µTBS of the specimens remineralized for 24 h did not decrease and was significantly higher than for the other experimental groups. Cross-linking with dry bonding maintained µTBS in specimens before aging in NaOCl, but the bonding durability was compromised. Remineralization of cross-linked dentin for 24 h followed by dry bonding increased the immediate µTBS and improved bond durability. Therefore, combining cross-linking with remineralization of collagen fibrils progressively increased resistance to degradation, improving bond durability.


Assuntos
Colagem Dentária , Adesivos Dentinários , Adesivos Dentinários/química , Glutaral/farmacologia , Cimentos de Resina/química , Teste de Materiais , Colágeno , Dentina , Resistência à Tração
18.
Cell Prolif ; 56(9): e13433, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36851859

RESUMO

Limbal stem/progenitor cells (LSC) represent the source of corneal epithelium renewal. LSC proliferation and differentiation are essential for corneal homeostasis, however, the regulatory mechanism remains largely unexplored. Here, we performed single-cell RNA sequencing and discovered proliferation heterogeneity as well as spontaneously differentiated and senescent cell subgroups in multiply passaged primary LSC. Fasciculation and elongation protein zeta 1 (FEZ1) and Dickkopf-1 (DKK1) were identified as two significant regulators of LSC proliferation and senescence. These two factors were mainly expressed in undifferentiated corneal epithelial cells (CECs). Knocking down the expression of either FEZ1 or DKK1 reduced cell division and caused cell cycle arrest. We observed that DKK1 acted as a downstream target of FEZ1 in LSC and that exogenous DKK1 protein partially prevented growth arrest and senescence upon FEZ1 suppression in vitro. In a mouse model of corneal injury, DKK1 also rescued the corneal epithelium after recovery was inhibited by FEZ1 suppression. Hence, the FEZ1-DKK1 axis was required for CEC proliferation and the juvenile state and can potentially be targeted as a therapeutic strategy for promoting recovery after corneal injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Lesões da Córnea , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco do Limbo , Proteínas do Tecido Nervoso , Transcriptoma , Animais , Camundongos , Proliferação de Células , Lesões da Córnea/metabolismo , Células-Tronco do Limbo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
19.
Life Sci ; 315: 121274, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36509195

RESUMO

AIMS: Oral squamous cell carcinoma (OSCC) is considered as the sixth most common cancer worldwide characterized by high invasiveness, high metastasis rate and high mortality. It is urgent to explore novel therapeutic strategies to overcome this feature. Metformin is currently a strong candidate anti-tumor drug in multiple cancers. However, whether metformin could inhibit cancer progression by regulating RNA alternative splicing remains largely unknown. MAIN METHODS: Cell proliferation and growth ability of CAL-27 and UM-SCC6 were analyzed by CCK8 and colony formation assays. Cell migration was judged by wound healing assay. Mechanistically, RNA-seq was applied to systematically identify genes that are regulated by metformin. The expression of metformin-regulated genes was determined by real-time quantitative PCR (RT-qPCR). Metformin-regulated alternative splicing events were confirmed by RT-PCR. KEY FINDINGS: We demonstrated that metformin could significantly inhibit the proliferation and migration of oral squamous cell carcinoma cells. Mechanistically, in addition to transcriptional regulation, metformin induces a wide range of alternative splicing alteration, including genes involved in centrosome, cellular response to DNA damage stimulus, GTPase binding, histone modification, catalytic activity, regulation of cell cycle process and ATPase complex. Notably, metformin specifically modulates the splicing of NUBP2, a component of the cytosolic iron-sulfur (Fe/S) protein assembly (CIA). Briefly, metformin favors the production of NUBP2-L, the long splicing isoform of NUBP2, thereby inhibiting cancer cell proliferation. SIGNIFICANCE: Our findings provide mechanistic insights of metformin on RNA alternative splicing regulation, thus to offer a potential novel route for metformin to inhibit cancer progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Metformina , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , RNA/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Processamento Alternativo , Metformina/farmacologia , Metformina/uso terapêutico , Proliferação de Células , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica
20.
Vet Microbiol ; 276: 109616, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495740

RESUMO

Porcine deltacoronavirus (PDCoV) is a newly emerging swine enteropathogenic coronavirus with extensive tissue tropism and cross-species transmission potential. Heparan sulfate (HS) is a complex polysaccharide ubiquitously expressed on cell surfaces and the extracellular matrix and acts as an attachment factor for many viruses. However, whether PDCoV uses HS as an attachment receptor is unclear. In this study, we found that treatment with heparin sodium or heparinase Ⅱ significantly inhibited PDCoV binding and infection among LLC-PK1 and IPI-2I cells. Attenuation of HS sulfuration by sodium chlorate also impeded PDCoV binding and infection. Moreover, we demonstrated that HS functioned independently of amino peptidase N (APN), a functional PDCoV receptor, in PDCoV infection. Molecular docking revealed that the S1 subunit of the PDCoV spike protein might be a putative region for HS binding. Taken together, these results firstly confirmed that HS is an attachment receptor for PDCoV infection, providing new insight into better understanding the mechanisms of PDCoV-host interactions.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Simulação de Acoplamento Molecular , Coronavirus/fisiologia , Infecções por Coronavirus/veterinária , Deltacoronavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...