Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
IEEE Open J Eng Med Biol ; 5: 261-270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766544

RESUMO

Goal: The early diagnosis and treatment of hepatitis is essential to reduce hepatitis-related liver function deterioration and mortality. One component of the widely-used Ishak grading system for the grading of periportal interface hepatitis is based on the percentage of portal borders infiltrated by lymphocytes. Thus, the accurate detection of lymphocyte-infiltrated periportal regions is critical in the diagnosis of hepatitis. However, the infiltrating lymphocytes usually result in the formation of ambiguous and highly-irregular portal boundaries, and thus identifying the infiltrated portal boundary regions precisely using automated methods is challenging. This study aims to develop a deep-learning-based automatic detection framework to assist diagnosis. Methods: The present study proposes a framework consisting of a Structurally-REfined Deep Portal Segmentation module and an Infiltrated Periportal Region Detection module based on heterogeneous infiltration features to accurately identify the infiltrated periportal regions in liver Whole Slide Images. Results: The proposed method achieves 0.725 in F1-score of lymphocyte-infiltrated periportal region detection. Moreover, the statistics of the ratio of the detected infiltrated portal boundary have high correlation to the Ishak grade (Spearman's correlations more than 0.87 with p-values less than 0.001) and medium correlation to the liver function index aspartate aminotransferase and alanine aminotransferase (Spearman's correlations more than 0.63 and 0.57 with p-values less than 0.001). Conclusions: The study shows the statistics of the ratio of infiltrated portal boundary have correlation to the Ishak grade and liver function index. The proposed framework provides pathologists with a useful and reliable tool for hepatitis diagnosis.

2.
RSC Adv ; 14(8): 5435-5439, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38352681

RESUMO

4-Pyrimidone-2-thioethers can be useful synthetic precursors to densely functionalized pyrimidines, commonly encountered in bioactive molecules. A convenient one-pot access to 4-pyrimidone-2-thioethers is reported herein, which utilizes a sequential base- and acid-mediated condensation of alkylisothioureas with ß-ketoesters. Owing to mild reaction conditions, good to excellent functional group tolerance and yields are achieved. The utility of this approach is demonstrated by the synthesis of the crucial adagrasib intermediate on a 200 gram scale.

3.
J Med Virol ; 96(1): e29348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180275

RESUMO

Ground glass hepatocytes (GGHs) have been associated with hepatocellular carcinoma (HCC) recurrence and poor prognosis. We previously demonstrated that pre-S expression in some GGHs is resistant to current hepatitis B virus (HBV) antiviral therapies. This study aimed to investigate whether integrated HBV DNA (iDNA) is the primary HBV DNA species responsible for sustained pre-S expression in GGH after effective antiviral therapy. We characterized 10 sets of micro-dissected, formalin-fixed-paraffin-embedded, and frozen GGH, HCC, and adjacent hepatitis B surface antigen-negative stained tissues for iDNA, pre-S deletions, and the quantity of covalently closed circular DNA. Eight patients had detectable pre-S deletions, and nine had detectable iDNA. Interestingly, eight patients had integrations within the TERT and CCNE1 genes, which are known recurrent integration sites associated with HCC. Furthermore, we observed a recurrent integration in the ABCC13 gene. Additionally, we identified variations in the type and quantity of pre-S deletions within individual sets of tissues by junction-specific PacBio long-read sequencing. The data from long-read sequencing indicate that some pre-S deletions were acquired following the integration events. Our findings demonstrate that iDNA exists in GGH and can be responsible for sustained pre-S expression in GGH after effective antiviral therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , DNA Viral/genética , Neoplasias Hepáticas/genética , Hepatócitos , Mutação , Antivirais/uso terapêutico
4.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092765

RESUMO

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Filogenia , Sintenia/genética , Regulação da Expressão Gênica , Genoma/genética
5.
Chemotherapy ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38071975

RESUMO

INTRODUCTION: Gastric cancer is the 5th most common cancer and 3rd leading cause of cancer-related death worldwide. There are three main ways to treat gastric cancer: surgical resection, radiation therapy, and drug therapy. Furthermore, combinations of two to three regimens can improve survival. However, the survival outcomes of chemotherapy in advanced gastric cancer patients are still unsatisfactory. Unfortunately, no widely useful biomarkers have been verified to predict the efficacy of chemotherapy for locally advanced gastric cancer. METHODS: An MTT assay was used to determine the cell viability after cisplatin or oxaliplatin treatment. Western blotting and immunohistochemistry were utilized to examine the sFRP4 level and associated signaling pathways. Immunofluorescence staining was utilized to analyze the location of ß-catenin. Colony formation and Transwell assays were used to analyze the functions related with cisplatin, oxaliplatin and sFRP4. RESULTS: We have found that gastric cancer patients treated with combinations of 5-fluorouracil (5-FU) and cisplatin regimens have better survival rates than those treated with 5-FU-based chemotherapy alone. Secreted frizzled-related protein 4 (sFRP4) was selected as a potential target from stringent analysis and intersection of 5-FU and cisplatin resistance-related gene sets. sFRP4 was shown to be overexpressed in clinical gastric tumor tissues and positively correlated with a worse survival rate. In addition, sFRP4 and ß-catenin were upregulated in cisplatin-resistant and oxaliplatin-resistant gastric cancer cells compared to parental cells. Immunofluorescence staining and nuclear fractionation showed that ß-catenin translocated from the cytosol into the nucleus. Moreover, sFRP4 was detected in the conditioned medium of these resistant cells, which indicates that sFRP4 might have an extracellular role in chemotherapy resistance. Increased migration capacity and dysregulation of epithelial-mesenchymal transition-related markers, which might result from the dysregulation of sFRP4, were observed in cisplatin-resistant and oxaliplatin-resistant gastric cancer cells. DISCUSSION/CONCLUSION: In summary, sFRP4 might play a critical role in resistance to cisplatin and oxaliplatin, cell metastasis and poor prognosis in gastric cancer via the Wnt-ß-catenin pathway. Investigations of the molecular mechanism underlying sFRP4-modulated cancer progression and chemotherapeutic outcomes can provide additional therapeutic strategies for gastric cancer.

6.
Cancer Cell Int ; 23(1): 237, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821959

RESUMO

BACKGROUND: Lysine Demethylase 2A (KDM2A) plays a crucial role in cancer cell growth, differentiation, metastasis, and the maintenance of cancer stemness. Our previous study found that cancer-secreted IL-6 can upregulate the expression of KDM2A to promote further the transition of cells into cancer-associated fibroblasts (CAFs). However, the molecular mechanism by which breast cancer-secreted IL-6 regulates the expression of KDM2A remains unclear. Therefore, this study aimed to elucidate the underlying molecular mechanism of IL-6 in regulating KDM2A expression in CAFs and KDM2A-mediated paclitaxel resistance in breast cancer. METHODS: The ectopic vector expression and biochemical inhibitor were used to analyze the KDM2A expression regulated by HS-578 T conditioned medium or IL-6 in mammary fibroblasts. Immunoprecipitation and chromatin immunoprecipitation assays were conducted to examine the interaction between STAT3 and NFκB p50. M2 macrophage polarization was assessed by analyzing M2 macrophage-specific markers using flow cytometry and RT-PCR. ESTIMATE algorithm was used to analyze the tumor microenvironment-dominant breast cancer samples from the TCGA database. The correlation between stromal KDM2A and CD163 + M2 macrophages was analyzed using the Pearson correlation coefficient. Cell viability was determined using trypan blue exclusion assay. RESULTS: IL-6 regulates gene expression via activation and dimerization of STAT3 or collaboration of STAT3 and NFκB. However, STAT3, a downstream transcription factor of the IL-6 signaling pathway, was directly complexed with NFκB p50, not NFκB p65, to upregulate the expression of KDM2A in CAFs. Enrichment analysis of immune cells/stromal cells using TCGA-breast cancer RNA-seq data unveiled a positive correlation between stromal KDM2A and the abundance of M2 macrophages. CXCR2-associated chemokines secreted by KDM2A-expressing CAFs stimulated M2 macrophage polarization, which in turn secreted CCL2 to increase paclitaxel resistance in breast cancer cells by activating CCR2 signaling. CONCLUSION: This study revealed the non-canonical molecular mechanism of IL-6 secreted by breast cancer upregulated KDM2A expression in CAFs via a novel STAT3/NFκB p50 axis, which STAT3 complexed with NFκB p50 in NFκB p50 binding motif of KDM2A promoter. KDM2A-expressing CAFs dominantly secreted the CXCR2-associated chemokines to promote M2 macrophage polarization and enhance paclitaxel resistance in breast cancer. These findings underscore the therapeutic potential of targeting the CXCR2 or CCR2 pathway as a novel strategy for paclitaxel-resistant breast cancer.

7.
Cancer Cell Int ; 23(1): 112, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309001

RESUMO

Oral squamous cell carcinoma (OSCC) is the predominant histological type of the head and neck squamous cell carcinoma (HNSCC). By comparing the differentially expressed genes (DEGs) in OSCC-TCGA patients with copy number variations (CNVs) that we identify in OSCC-OncoScan dataset, we herein identified 37 dysregulated candidate genes. Among these potential candidate genes, 26 have been previously reported as dysregulated proteins or genes in HNSCC. Among 11 novel candidates, the overall survival analysis revealed that melanotransferrin (MFI2) is the most significant prognostic molecular in OSCC-TCGA patients. Another independent Taiwanese cohort confirmed that higher MFI2 transcript levels were significantly associated with poor prognosis. Mechanistically, we found that knockdown of MFI2 reduced cell viability, migration and invasion via modulating EGF/FAK signaling in OSCC cells. Collectively, our results support a mechanistic understanding of a novel role for MFI2 in promoting cell invasiveness in OSCC.

8.
Cancer Cell Int ; 23(1): 42, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899352

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) accounts for almost 80% of all liver cancer cases and is the sixth most common cancer and the second most common cause of cancer-related death worldwide. The survival rate of sorafenib-treated advanced HCC patients is still unsatisfactory. Unfortunately, no useful biomarkers have been verified to predict sorafenib efficacy in HCC. RESULTS: We assessed a sorafenib resistance-related microarray dataset and found that anterior gradient 2 (AGR2) is highly associated with overall and recurrence-free survival and with several clinical parameters in HCC. However, the mechanisms underlying the role of AGR2 in sorafenib resistance and HCC progression remain unknown. We found that sorafenib induces AGR2 secretion via posttranslational modification and that AGR2 plays a critical role in sorafenib-regulated cell viability and endoplasmic reticulum (ER) stress and induces apoptosis in sorafenib-sensitive cells. In sorafenib-sensitive cells, sorafenib downregulates intracellular AGR2 and conversely induces AGR2 secretion, which suppresses its regulation of ER stress and cell survival. In contrast, AGR2 is highly intracellularly expressed in sorafenib-resistant cells, which supports ER homeostasis and cell survival. We suggest that AGR2 regulates ER stress to influence HCC progression and sorafenib resistance. CONCLUSIONS: This is the first study to report that AGR2 can modulate ER homeostasis via the IRE1α-XBP1 cascade to regulate HCC progression and sorafenib resistance. Elucidation of the predictive value of AGR2 and its molecular and cellular mechanisms in sorafenib resistance could provide additional options for HCC treatment.

9.
J Hepatocell Carcinoma ; 10: 123-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741246

RESUMO

Introduction: Hepatocellular carcinoma (HCC) accounts for 80% of all liver cancers and is the 2nd leading cause of cancer-related death in Taiwan. Various factors, including rapid cell growth, a high recurrence rate and drug resistance, make HCC difficult to cure. Moreover, the survival rate of advanced HCC patients treated with systemic chemotherapy remains unsatisfactory. Hence, the identification of novel molecular targets and the underlying mechanisms of chemoresistance in HCC and the development more effective therapeutic regimens are desperately needed. Methods: An MTT assay was used to determine the cell viability after cisplatin or doxorubicin treatment. Western blotting, qRT‒PCR and immunohistochemistry were utilized to examine the protein tyrosine phosphatase IVA3 (PTP4A3) level and associated signaling pathways. ELISA was utilized to analyze the levels of the inflammatory cytokine IL-6 influenced by cisplatin, doxorubicin and PTP4A3 silencing. Results: In this study, we found that PTP4A3 in the cisplatin/doxorubicin-resistant microarray was closely associated with the overall and recurrence-free survival rates of HCC patients. Cisplatin or doxorubicin significantly reduced cell viability and decreased PTP4A3 expression in hepatoma cells. IL-6 secretion increased with cisplatin or doxorubicin treatment and after PTP4A3 silencing. Furthermore, PTP4A3 was highly expressed in tumor tissues versus adjacent normal tissues from HCC patients. In addition, we evaluated the IL-6-associated signaling pathway involving STAT3 and JAK2, and the levels of p-STAT3, p-JAK2, STAT3 and JAK2 were obviously reduced with cisplatin or doxorubicin treatment in HCC cells using Western blotting and were also decreased after silencing PTP4A3. Collectively, we suggest that cisplatin or doxorubicin decreases HCC cell viability via downregulation of PTP4A3 expression through the IL-6R-JAK2-STAT3 cascade. Discussion: Therefore, emerging evidence provides a deep understanding of the roles of PTP4A3 in HCC cisplatin/doxorubicin chemoresistance, which can be applied to develop early diagnosis strategies and reveal prognostic factors to establish novel targeted therapeutics to specifically treat HCC.

10.
Org Lett ; 25(6): 944-949, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36723667

RESUMO

A concise, transition-metal and protection-free synthesis of adagrasib (MRTX849), a novel KRASG12C inhibitor drug recently approved by the FDA, is reported. Introduction of two chiral building blocks to the tetrahydropyridopyrimidine core was accomplished via two sequential SNAr reactions. Extensive reaction optimization led to a robust, transition-metal-free oxidation of the sulfide intermediate. A judicious choice of the leaving group with favorable steric and electronic characteristics at the 4-OH position of the tetrahydropyridopyrimidine core enabled a facile SNAr displacement to introduce the chiral piperazine. This new, five-step, chromatography-free synthesis of adagrasib from readily available starting materials obviated the palladium catalysis and protecting group manipulations in the current commercial route and significantly improved the efficiency of the process in 45% overall yield.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Piperazinas , Acetonitrilas , Mutação
11.
Oncol Rep ; 49(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36660927

RESUMO

Hepatocellular carcinoma (HCC) represents almost 80% of all liver cancers, is the sixth most common cancer and is the second­highest cause of cancer­related deaths worldwide. Protein tyrosine phosphatases (PTPs), which are encoded by the largest family of phosphatase genes, play critical roles in cellular responses and are implicated in various signaling pathways. Moreover, PTPs are dysregulated and involved in various cellular processes in numerous cancers, including HCC. Kinases and phosphatases are coordinators that modulate cell activities and regulate signaling responses. There are multiple interacting signaling networks, and coordination of these signaling networks in response to a stimulus determines the physiological outcome. Numerous issues, such as drug resistance and inflammatory reactions in the tumor microenvironment, are implicated in cancer progression, and the role of PTPs in these processes has not been well elucidated. Therefore, the present review focused on discussing the relationship of PTPs with inflammatory cytokines and chemotherapy/targeted drug resistance, providing detailed information on how PTPs can modulate inflammatory reactions and drug resistance to influence progression in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/genética , Inflamação , Microambiente Tumoral
12.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203500

RESUMO

Diabetic nephropathy (DN) is a crucial metabolic health problem. The renin-angiotensin system (RAS) is well known to play an important role in DN. Abnormal RAS activity can cause the over-accumulation of angiotensin II (Ang II). Angiotensin-converting enzyme inhibitor (ACEI) administration has been proposed as a therapy, but previous studies have also indicated that chymase, the enzyme that hydrolyzes angiotensin I to Ang II in an ACE-independent pathway, may play an important role in the progression of DN. Therefore, this study established a model of severe DN progression in a db/db and ACE2 KO mouse model (db and ACE2 double-gene-knockout mice) to explore the roles of RAS factors in DNA and changes in their activity after short-term (only 4 weeks) feeding of a high-fat diet (HFD) to 8-week-old mice. The results indicate that FD-fed db/db and ACE2 KO mice fed an HFD represent a good model for investigating the role of RAS in DN. An HFD promotes the activation of MAPK, including p-JNK and p-p38, as well as the RAS signaling pathway, leading to renal damage in mice. Blocking Ang II/AT1R could alleviate the progression of DN after administration of ACEI or chymase inhibitor (CI). Both ACE and chymase are highly involved in Ang II generation in HFD-induced DN; therefore, ACEI and CI are potential treatments for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hormônios Peptídicos , Animais , Camundongos , Angiotensina II , Enzima de Conversão de Angiotensina 2/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antivirais , Quimases/genética , Nefropatias Diabéticas/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos Knockout , Sistema Renina-Angiotensina , Serina Proteases
13.
Cells ; 11(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36010685

RESUMO

Tumor metastasis is a complex process modulated by both intrinsic and extrinsic factors that ultimately result in poorer patient outcomes, including diminished survival. Pseudogene-derived long non-coding RNAs (lncRNA) play important roles in cancer progression. In the current study, we found that the pseudogene-derived lncRNA LPAL2 is downregulated in hepatocellular carcinoma (HCC) tissues, and further showed that elevated LPAL2 expression is positively correlated with survival outcome. The knockdown of LPAL2 in hepatoma cells induced tumor formation, migration, invasion, sphere formation, and drug resistance. Metalloproteinase 9 (MMP9) was identified as an LPAL2-regulated target gene, consistent with clinical findings that LPAL2 expression is significantly associated with MMP9 expression. Furthermore, patients with a higher expression of LPAL2 and lower expression of MMP9 (LPAL2-high/MMP9-low) had a higher survival rate than those with other combinations. Collectively, our findings establish LPAL2 as a novel tumor suppressor in HCC, and suggest targeting LPAL2 and MMP9 as a therapeutic approach for the treatment of HCC.


Assuntos
Apolipoproteína A-II/metabolismo , Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Processos Neoplásicos , RNA Longo não Codificante/genética
14.
Int Immunopharmacol ; 112: 109110, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36037651

RESUMO

Radiotherapy (RT) is applied to eradicate tumors in the clinic. However, hepatocellular carcinoma (HCC) exhibits resistance against RT. It is demonstrated that RT directly inhibits tumor growth but which induces type I interferons (IFNs) expression to phosphorylate STATs and increase STATs-downstream PD-L1 levels in the survival tumor cells. Since sorafenib is capable of suppressing STATs, we, therefore, hypothesize that sorafenib suppresses IFNs-mediated radioresistance and PD-L1 in the residual tumor cells and may synergistically enhance RT-mediated reactivation of CD8+ T immunological activity to eradicate HCC cells. We found that combined RT, sorafenib, and PBMCs significantly suppress the colony formation in the HCC cells, whereas CD8+ T cells expressed high granzyme B (GZMB) and perforin (PRF1) in co-cultured with RT-treated HCC cells. We demonstrated RT significantly inhibited HCC cell viability but induced IFNα and IL-6 expression in the RT-treated HCC cells, resulting in immune checkpoint PD-L1 and anti-apoptosis MCL1 and BCL2 overexpression in the non-RT HCC cells. We found that sorafenib decreased RT-PLC5 medium (RT-PLC5-m)-mediated cell growth by suppressing IFNα- and IL-6-mediated STAT1 and STAT3 phosphorylation. Sorafenib also reduced IFNα-mediated PD-L1 levels in HCC cells. Meanwhile, RT-PLC5-m reactivated CD8+ T cells and non-CD8+ PBMCs, resulting in high IFNγ and IL-2 levels in CD8+ T cells, and cytokines IFNα, IFNγ, IL-2, and IL-6 in non-CD8+ PBMCs. Particularly, CD8+ T cells expressed higher GZMB and PRF1 and non-CD8+ PBMCs expressed higher IFNα, IFNγ, IL-2, IL-6, CXCL9, and CXCL10 in co-cultured with RT-treated HCC cells compared to parental cells. Although we demonstrated that sorafenib slightly inhibited RT-mediated GZMB and PRF1 expression in CD8+ T cells, and cytokines levels in non-CD8+ PBMCs. Based on sorafenib significantly suppressed IFNα- and IL-6-mediated radioresistance and PD-L1 expression, we demonstrated that sorafenib synergized RT and immune surveillance for suppressing PLC5 cell viability in vitro. In conclusion, this study revealed that RT induced IFNα and IL-6 expression to phosphorylate STAT1 and STAT3 by autocrine and paracrine effect, leading to radioresistance and PD-L1 overexpression in HCC cells. Sorafenib not only suppressed IFNα- and IL-6-mediated PLC5 cell growth but also inhibited IFNα-mediated PD-L1 expression, synergistically enhancing RT-mediated CD8+ T cell reactivation against HCC cells.


Assuntos
Carcinoma Hepatocelular , Interferon Tipo I , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Antígeno B7-H1/metabolismo , Granzimas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Linfócitos T CD8-Positivos/metabolismo , Perforina/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Citocinas/metabolismo , Interferon Tipo I/metabolismo , Linhagem Celular Tumoral
15.
Chem Commun (Camb) ; 58(74): 10365-10367, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36017676

RESUMO

A high-yielding protocol for atropisomeric resolution was developed by rectifying incompatibilities between crystallization and epimerization via continuous processing. Application toward synthesis of MRTX1719, a densely functionalized active pharmaceutical ingredient (API), improved yield from 37% to 87%. This protocol provides a complementary means to access rotamers which challenge current asymmetric methodologies, and greatly improves sustainability by decreasing the consumption of solvent and advanced synthetic intermediates.


Assuntos
Cristalização , Cinética , Solventes/química
16.
Cell Biosci ; 12(1): 124, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941699

RESUMO

BACKGROUND: Targeting the HGF/MET signaling pathway has been a viable therapeutic strategy for various cancer types due to hyperactivation of HGF/MET axis occurs frequently that leads to detrimental cancer progression and recurrence. Deciphering novel molecule mechanisms underlying complex HGF/MET signaling network is therefore critical to development of effective therapeutics for treating MET-dependent malignancies. RESULTS: Using isobaric mass tag-based quantitative proteomics approach, we identified IFITM3, an interferon-induced transmembrane protein that was highly expressed in micro-dissected gastric cancer (GC) tumor regions relative to adjacent non-tumor epithelia. Analyses of GC clinical specimens revealed that expression IFITM3 was closely correlated to advanced pathological stages. IFITM3 has been reported as a PIP3 scaffold protein that promotes PI3K signaling. In present study, we unprecedentedly unraveled that IFITM3 associated with MET and AKT to facilitate HGF/MET mediated AKT signaling crosstalk in suppressing FOXO3, consequently leading to c-MYC mediated GC progression. In addition, gene ontology analyses of the clinical GC cohort revealed significant correlation between IFITM3-associated genes and targets of c-MYC, which is a crucial downstream effector of HGF/MET pathway in cancer progression. Moreover, we demonstrated ectopic expression of IFITM3 suppressed FOXO3 expression, consequently led to c-MYC induction to promote tumor growth, cell metastasis, cancer stemness as well as chemoresistance. Conversely, depletion of IFITM3 resulted in suppression of HGF triggered cellular growth and migration via inhibition of AKT/c-MYC signaling in GC. CONCLUSIONS: In summary, our present study unveiled a novel regulatory mechanism for c-MYC-driven oncogenesis underlined by IFITM3-mediated signaling crosstalk between MET associated AKT signaling cascade.

17.
Org Lett ; 24(20): 3736-3740, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35559611

RESUMO

Carbamates, typically used for the protection of amines, including Cbz, Alloc, and methyl carbamate, can be readily deprotected by treatment with 2-mercaptoethanol in the presence of potassium phosphate tribasic in N,N-dimethylacetamide at 75 °C. This nucleophilic deprotection protocol is superior to the standard hydrogenolysis or Lewis acid-mediated deprotection conditions for substrates bearing a functionality sensitive to these more traditional methods.


Assuntos
Aminas , Carbamatos , Mercaptoetanol
18.
Methods Mol Biol ; 2450: 179-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359308

RESUMO

Aeolosoma viride, a globally distributed freshwater annelid, has a semitransparent appearance with 10 to 12 segments, about 2 to 3 mm in length. It is easy to raise and handle in laboratory conditions. Due to its robust regenerative capacity and applicability of various molecular tools including EdU labeling, whole-mount in situ hybridization (WISH), and RNA interference (RNAi), it rises as a promising model for studying whole-body regeneration.


Assuntos
Oligoquetos , Planárias , Animais , Água Doce , Hibridização In Situ , Planárias/genética , Interferência de RNA
19.
Methods Mol Biol ; 2450: 437-465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359322

RESUMO

With a surprisingly complex genome and an ever-expanding genetic toolkit, the sea anemone Nematostella vectensis has become a powerful model system for the study of both development and whole-body regeneration. Here we provide the most current protocols for short-hairpin RNA (shRNA )-mediated gene knockdown and CRISPR/Cas9-targeted mutagenesis in this system. We further show that a simple Klenow reaction followed by in vitro transcription allows for the production of gene-specific shRNAs and single guide RNAs (sgRNAs) in a fast, affordable, and readily scalable manner. Together, shRNA knockdown and CRISPR/Cas9-targeted mutagenesis allow for rapid screens of gene function as well as the production of stable mutant lines that enable functional genetic analysis throughout the Nematostella life cycle.


Assuntos
Anêmonas-do-Mar , Animais , Técnicas de Silenciamento de Genes , Genoma , Mutagênese , RNA Interferente Pequeno/genética , Anêmonas-do-Mar/genética
20.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163579

RESUMO

Mitochondrial DNA (mtDNA) has been identified as a significant genetic biomarker in disease, cancer and evolution. Mitochondria function as modulators for regulating cellular metabolism. In the clinic, mtDNA variations (mutations/single nucleotide polymorphisms) and dysregulation of mitochondria-encoded genes are associated with survival outcomes among cancer patients. On the other hand, nuclear-encoded genes have been found to regulate mitochondria-encoded gene expression, in turn regulating mitochondrial homeostasis. These observations suggest that the crosstalk between the nuclear genome and mitochondrial genome is important for cellular function. Therefore, this review summarizes the significant mechanisms and functional roles of mtDNA variations (DNA level) and mtDNA-encoded genes (RNA and protein levels) in cancers and discusses new mechanisms of crosstalk between mtDNA and the nuclear genome.


Assuntos
DNA Mitocondrial , DNA de Neoplasias , Mitocôndrias , Mutação , Neoplasias , Polimorfismo de Nucleotídeo Único , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...