Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15304-15310, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585084

RESUMO

ZnGa2O4 sensing films were prepared using an RF magnetron sputtering system and connected to a commercial metal oxide semiconductor field-effect transistor (MOSFET) as the extended-gate field-effect transistor (EGFET) to detect pH values. Experimental parameters were adjusted by varying the oxygen flow rate in the process chamber to produce ZnGa2O4 sensing films with different oxygen ratios. These films were then treated in a furnace tube at an annealing temperature of 700 °C. The sensitivity and linearity of the constant current mode and the constant voltage mode were measured and analyzed in the pH range of 2-12. Under the deposition conditions with an oxygen ratio of 6%, the sensitivity reached 23.14 mV/pH and 33.49 µA/pH, with corresponding linearity values of 92.1 and 96.15%, respectively. Finally, the sensing performance of the ZnGa2O4 EGFET pH sensor with and without annealing processes was analyzed and compared.

2.
ACS Appl Mater Interfaces ; 15(29): 35239-35250, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459567

RESUMO

Deep-blue thermally activated delayed fluorescence (TADF) molecules present promising potential in organic light-emitting diodes (OLEDs), especially for display applications. Here, an efficient molecular engineering approach to modifying the donor or acceptor features of the D-π-A-configured TADF molecules for deep-blue emission is reported. By introducing oxygen and sulfone as a bridge unit onto the macrocyclic donor, two emitters, c-ON-MeTRZ and c-NS-MeTRZ, are synthesized and characterized, respectively. The reduced donor strength of c-ON-MeTRZ and c-NS-MeTRZ as compared to that of the model molecule c-NN-MeTRZ leads to blue-shifted emissions with high photoluminescence quantum yields (PLQYs) and retains TADF characters, while the new emitter c-NN-MePym with the most blue-shifted emission only exhibits a pure fluorescent nature because of the electron-accepting feature of pyrimidine that is insufficient for inducing the TADF property. In the presence of macrocyclic donors, these new emitters show high horizontal dipole ratios (Θ// = 85-89%), which are beneficial for improving the light out-coupling efficiency. Deep-blue TADF OLEDs incorporating c-ON-MeTRZ as an emitter doped in the mCPCN host achieves a high maximum external quantum efficiency (EQEmax) of 30.2% together with 1931 Commission Internationale de I'Eclairage (CIE) coordinates of (0.14, 0.13), while the counter device employing c-NS-MeTRZ as a dopant gives EQEmax of 15.4% and CIE coordinates of (0.14, 0.09). The EQEmax of c-ON-MeTRZ- and c-NS-MeTRZ-based devices can be significantly improved to 34.4 and 29.3%, respectively, with a polar host DPEPO, which stabilizes the charge transfer (CT) S1 state to give lower ΔEST for improving the reverse intersystem crossing process. The efficient TADF character, high PLQYs, and high anisotropic emission dipole ratios work together to render the superior electroluminescence (EL) efficiencies. Based on the detailed characterizations of physical properties, theoretical analyses, and comprehensive study on the corresponding devices, a clear structure-property-performance relationship has been successfully established to verify the effective molecular design strategy of modulating the macrocyclic donor characters for efficient deep-blue TADF emitters.

3.
ACS Appl Electron Mater ; 5(2): 1013-1023, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873261

RESUMO

Four emitters based on the naphthyridine acceptor moiety and various donor units exhibiting thermally activated delayed fluorescence (TADF) were designed and synthesized. The emitters exhibited excellent TADF properties with a small ΔE ST and a high photoluminescence quantum yield. A green TADF organic light-emitting diode based on 10-(4-(1,8-naphthyridin-2-yl)phenyl)-10H-phenothiazine exhibited a maximum external quantum efficiency of 16.4% with Commission Internationale de L'éclairage coordinates of (0.368, 0.569) as well as a high current and power efficiency of 58.6 cd/A and 57.1 lm/W, respectively. The supreme power efficiency is a record-high value among the reported values of devices with naphthyridine-based emitters. This results from its high photoluminescence quantum yield, efficient TADF, and horizontal molecular orientation. The molecular orientations of the films of the host and the host doped with the naphthyridine emitter were explored by angle-dependent photoluminescence and grazing-incidence small-angle X-ray scattering (GIWAXS). The orientation order parameters (ΘADPL) were found to be 0.37, 0.45, 0.62, and 0.74 for the naphthyridine dopants with dimethylacridan, carbazole, phenoxazine, and phenothiazine donor moieties, respectively. These results were also proven by GIWAXS measurement. The derivative of naphthyridine and phenothiazine was shown to be more flexible to align with the host and to show the favorable horizontal molecular orientation and crystalline domain size, benefiting the outcoupling efficiency and contributing to the device efficiency.

4.
Mater Horiz ; 9(2): 772-779, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34897349

RESUMO

Near-infrared thermally activated delayed fluorescence (NIR-TADF) materials with emission over 700 nm have been insufficiently investigated mainly due to the limited choice of strong donor/acceptor units for molecular construction and the limited electronic coupling between the donors and acceptors. Herein, a novel D-A1-A2-A3 configuration was developed for the design of a NIR-TADF material (TPA-CN-N4-2PY), in which three types of sub-acceptor units (CN: cyano; N4: dipyrido[3,2-a:2',3'-c]phenazine; PY: pyridine) were incorporated into a molecular skeleton to reinforce the electron-accepting strength. The attachment of two pyridine units on TPA-CN-N4 produced TPA-CN-N4-2PY with an extended π-backbone, which shifted the electroluminescence (EL) emission into the NIR region and enhanced the horizontal ratio of emitting dipole orientation (Θ//) simultaneously. TPA-CN-N4-2PY-based OLEDs demonstrated a record-high external quantum efficiency (EQE) of 21.9% with an emission peak at 712 nm and Θ// = 85% at the doping ratio of 9.0 wt%. On the contrary, the parent compound TPA-CN-N4-based OLEDs at the same doping ratio achieved an EQE of 23.4% at 678 nm with Θ// = 75%. This multiple sub-acceptors approach could enrich the design strategy of the NIR-TADF materials, and the large conjugated system could improve the Θ// for achieving efficient emitters.


Assuntos
Eletrônica , Fluorescência
5.
ACS Appl Mater Interfaces ; 13(29): 34605-34615, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264644

RESUMO

A novel bis-4Ph-substituted 9,10-dipehnylanthracene deep blue [1931 CIE (0.15, 0.08)] fluorescent compound, AnB4Ph, has been synthesized and characterized for organic light-emitting diode (OLED) applications. Our experimental study of AnB4Ph excludes the possibility of triplet-triplet annihilation, hybridized local and charge transfer, or thermally activated delayed fluorescent characteristics of the material. Since the solid-state photoluminescence quantum yield of AnB4Ph was determined to be 48%, assuming a 100% for the charge recombination efficiency, the light outcoupling efficiency (ηout) of an AnB4Ph non-doped OLED achieving an external quantum efficiency (EQE) of 5.3% is at least 44%, which is more than twofold higher than 20% for conventional OLEDs. Both grazing incidence wide-angle X-ray scattering (GIWAXS) and angle-dependent photoluminescence (ADPL) measurements reveal AnB4Ph having a high value of order parameter (SGIWAXS) of 0.61 for a ππ stacking along the normal direction and an orientation order parameter (SADPL) for a horizontal emitting dipole moment of -0.50 or Θ (horizontal-dipole ratios) of 100%, respectively. Otherwise, a refractive index (n) measurement provides a n = 1.80 for AnB4Ph thin films. Based on ηout = 1.2 × n-2, the calculated ηout is 37%, which is also in accordance with the results of GIWAXS and ADPL. We have also fabricated the classical fluorescent DPAVBi-doped AnB4Ph OLEDs, which display a true blue [1931 CIE (0.15 and 0.16)] electroluminescence with a high efficiency (EQE = 6.9%), surpassing the conventional ∼5% EQE. Based on an ηout of 42% for DPAVBi-doped AnB4Ph OLEDs, our studies suggest that the extremely horizontally aligned AnB4Ph host material exerts the same horizontal alignment on the DPAVBi dopant molecules.

6.
J Nanosci Nanotechnol ; 21(3): 1659-1666, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404430

RESUMO

A nanostructured molybdenum trioxide (MoO3) layer was successfully fabricated utilizing various deposition rates, employed as an anodic buffer layer to separate the active layer from a silver anode and modifying the anodic surface to facilitate hole transportation for top-incident organic photovoltaic (TIOPV) devices. The deposition rate and thickness of the MoO3 layer were crucial parameters for determining the surface morphology and work function, and the internal optical field distribution, respectively. These factors affected the performance of the devices in terms of their open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The baseline TIOPV device without a buffer layer had a power conversion efficiency (PCE) of only 0.47%. By contrast, with a smooth 20-nm MoO3 buffer layer fabricated using a deposition rate of 1 Å/s (which prevented problems caused by the Ag anode), another fabricated TIOPV device had substantially higher VOC, JSC and FF values, which improved the PCE by a factor of 6.2 to 2.92%. When an additional 5-nm nanostructured MoO3 layer was deposited at a deposition rate of 0.5 Å/s, the most efficient TIOPV device had an even greater PCE, a factor of 7.5 times higher at 3.53%.

7.
RSC Adv ; 11(34): 20884-20891, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35479391

RESUMO

Developing a colloidal quantum-dot light-emitting device (QDLED) with high efficiency and good reliability is necessarily preliminary for the next-generation high-quality display application. Most QDLED reports are focused on efficiency improvement, but the device operational lifetime issue is less addressed and also the relevant degradation mechanisms. This study achieved a 1.72 times elongation in the operational lifetime and a 9 times improvement in the efficiency of QDLED by inserting a hole-transporting/electron-blocking poly(9-vinylcarbazole) (PVK) layer, which prevented operational degradation on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-secbutylphenyl))-diphenylamine)] (TFB) hole-transporting layer and also confined the electron in the QD-emitting layer. Although the TFB/PVK HTL structure is a well-known pair to enhance the device performance, its detailed mechanisms were rarely mentioned, especially for relative operational lifetime issues. Herein, a new insight behind operational lifetime elongation of QDLED is disclosed through various fundamental experiments including steady-state photoluminescence, transient electroluminescence and single-carrier only devices. Evidently, other than QD degradation, this study found that the other crucial factor that decreased the device lifetime was TFB-HTL degradation using steady-state photoluminescence and transient electroluminescence analyses. The PVK electron-only device exhibited a stable voltage value when it was driven by fixed current, which also affirmed that PVK has excellent electron-stability characteristics.

8.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138043

RESUMO

In this work, Ga2O3 films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system with trimethylgallium precursor and oxygen (O2) plasma. To improve the quality of Ga2O3 films, they were annealed in an O2 ambient furnace system for 15 min at 700, 800, and 900 °C, respectively. The performance improvement was verified from the measurement results of X-ray diffraction, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The optical bandgap energy of the Ga2O3 films decreased with an increase of annealing temperatures. Metal-semiconductor-metal ultraviolet C photodetectors (MSM UVC-PDs) with various Ga2O3 active layers were fabricated and studied in this work. The cut-off wavelength of the MSM UVC-PDs with the Ga2O3 active layers annealed at 800 °C was 250 nm. Compared with the performance of the MSM UVC-PDs with the as-grown Ga2O3 active layers, the MSM UVC-PDs with the 800 °C-annealed Ga2O3 active layers under a bias voltage of 5 V exhibited better performances including photoresponsivity of 22.19 A/W, UV/visible rejection ratio of 5.98 × 104, and detectivity of 8.74 × 1012 cmHz1/2W-1.

9.
ACS Appl Mater Interfaces ; 12(44): 49895-49904, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095574

RESUMO

High-quality host materials are indispensable for the construction in the emitting layer of efficient organic light-emitting diodes (OLEDs), especially in a guest and host system. The good carrier transport and energy transfer between the host and emitters are out of necessity. In this work, a wide bandgap and bipolar organic compound, 2,2'-bis(4,5-diphenyl-(1,2,4)-triazol-3-yl)biphenyl (BTBP), conjugating two electron-transporting triazole moieties on a hole-transporting biphenyl core, was synthesized and characterized. The wide bandgap of 4.0 eV makes the promise in efficient energy transfer between the host and various color emitters to apply as the universal host, especially for blue emitters. The close electron and hole mobilities perform the same order of 10-5 cm2·V-1·s-1, identified as bipolar behavior and benefited for carrier balance at low bias. Although carrier transportation belongs to bipolar behavior at a low electrical field, the electron mobility is much faster than the hole one at a high electrical field and belongs to electron-transporting behavior. Employing the BTBP as the host matrix mixed with a phosphor dopant, iridium(III)bis[4,6-di-fluorophenyl-pyridinato-N,C2]picolinate, a high-efficiency sky-blue phosphorescent organic light-emitting diode (OLED) was achieved with a maximum current efficiency of 65.9 cd/A, maximum power efficiency of 62.8 lm/W, and maximum external quantum efficiency of 30.2%.

10.
Sci Rep ; 9(1): 3654, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842539

RESUMO

In this study, we demonstrated a blue phosphorescent organic light-emitting diode (BPOLED) based on a host with two carbazole and one trizole (2CbzTAZ) moiety, 9,9'-(2-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)-1,3-phenylene)bis(9H-carbazole), that exhibits bipolar transport characteristics. Compared with the devices with a carbazole host (N,N'-dicarbazolyl-3,5-benzene, (mCP)), triazole host (3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, (TAZ)), or a physical mixture of mCP:TAZ, which exhibit hole, electron, and bipolar transport characteristics, respectively, the BPOLED with the bipolar 2CbzTAZ host exhibited the lowest driving voltage (6.55 V at 10 mA/cm2), the highest efficiencies (maximum current efficiency of 52.25 cd/A and external quantum efficiency of 23.89%), and the lowest efficiency roll-off, when doped with bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) as blue phosphor. From analyses of light leakage of the emission spectra of electroluminescence, transient electroluminescence, and partially doped OLEDs, it was found that the recombination zone was well confined inside the emitting layer and the recombination rate was most efficient in a 2CbzTAZ-based OLED. For the other cases using mCP, TAZ, and mCP:TAZ as hosts, electrons and holes transported with different routes that resulted in carrier accumulation on different organic molecules and lowered the recombination rate.

11.
ACS Appl Mater Interfaces ; 11(8): 8337-8349, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30714358

RESUMO

Four new donor-acceptor-acceptor (D-A-A) type molecules (DTCPB, DTCTB, DTCPBO, and DTCTBO), wherein benzothiadiazole or benzoxadiazole serves as the central A bridging triarylamine (D) and cyano group (terminal A), have been synthesized and characterized. The intramolecular charge-transfer character renders these molecules with strong visible light absorption and forms antiparallel dimeric crystal packing with evident π-π intermolecular interactions. The characteristics of the vacuum-processed photovoltaic device with a bulk heterojunction active layer employing these molecules as electronic donors combining C70 as electronic acceptor were examined and a clear structure-property-performance relationship was concluded. Among them, the DTCPB-based device delivers the best power conversion efficiency (PCE) up to 6.55% under AM 1.5 G irradiation. The study of PCE dependence on the light intensity indicates the DTCPB-based device exhibits superior exciton dissociation and less propensity of geminated recombination, which was further verified by a steady photoluminescence study. The DTCPB-based device was further optimized to give an improved PCE up to 6.96% with relatively high stability under AM 1.5 G continuous light-soaking for 150 h. This device can also perform a PCE close to 16% under a TLD-840 fluorescent lamp (800 lux), indicating its promising prospect for indoor photovoltaic application.

12.
Phys Chem Chem Phys ; 20(43): 27449-27455, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30357176

RESUMO

Exciton dynamics in a solid-state exciplex sensitized triplet-triplet annihilation (ESTTA) system are studied using transient photoluminescence (TrPL) measurements. The ESTTA system is a trilayer structure with 4,4',4''-tris(N-3-methyphenyl-N-phenyl-amino)triphenylamine (m-MTDATA) acting as the electron donor, 1-(2,5-dimethyl-4-(1-pyrenyl)phenyl)pyrene (DMPPP) as a triplet-diffusion-singlet-blocking (TDSB) layer, and 9,10-bis(2'-naphthyl) anthracene (ADN), acting as the electron acceptor and emitter. The thicknesses of the m-MTDATA and ADN layers are 30 nm, while the thickness of the DMPPP layer is varied to characterize its effect on the singlet quenching of the ADN emission. We find that electron transfer via tunneling through the DMPPP layer is the dominant quenching channel, with a characteristic length of ∼5 nm. Doping the high photoluminescence quantum yield molecule 4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl (DPAVBi) into the ADN layer enhanced the overall intensity of the ESTTA signal but did not prevent quenching by exciplex formation. The trilayer configuration (m-MTDATA/DMPPP/ADN) can effectively prevent ADN singlets from being quenched by electron transfer and exciplex formation, and a key property of the DMPPP is its tendency to not undergo electron transfer to the ADN.

13.
Adv Mater ; 30(50): e1804850, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368942

RESUMO

Solid-state triplet-triplet annihilation upconversion (TTAUC) blue emission in an electroluminescence device (i.e., an organic light-emitting diode (OLED)) is demonstrated. A conventional green fluorophore, tris-(8-hydroxyquinoline)aluminum (Alq3 ), is employed as the sensitizer that generates 75% triplet under electrical pumping for the blue triplet-triplet annihilation emitter, 9,10-bis(2'-naphthyl) anthracene (ADN), with the heterojunction bilayer structure. The operation lifetime is elongated both for ADN blue (4.1x) and Alq3 green (34.8%) emission due to efficient use of excitons and separation of recombination and emission zone. To reduce the singlet quenching (SQ) of blue TTAUC signal by the Alq3 sensitizer with lower bandgap, 1-(2,5-dimethyl-4-(1-pyrenyl)phenyl)pyrene (DMPPP) is inserted between the Alq3 and ADN as a triplet-diffusion-and-singlet-blocking layer. DMPPP exhibits triplet energy close to Alq3 and higher than ADN, as well as higher singlet energy than both Alq3 and ADN. It allows triplet diffusion from Alq3 to ADN, but blocks the SQ of the blue TTAUC signal by Alq3 . 86.1% intrinsic efficiency of TTAUC is demonstrated in this trilayer (Alq3 /DMPPP/ADN) OLED.

14.
ACS Appl Mater Interfaces ; 9(12): 10963-10970, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28274116

RESUMO

A new concept for organic light-emitting diodes (OLEDs) is presented, which is called exciplex-sensitized triplet-triplet annihilation (ESTTA). The exciplex formed at the organic heterojunction interface of 4,4',4″-tris(N-3-methyphenyl-N-phenyl-amino) triphenylamine and 9,10-bis(2'-naphthyl) anthracene (ADN) is used to sensitize the triplet-triplet annihilation (TTA) process on the ADN molecules. This results in a turn-on voltage (2.2 V) of the blue emission from the OLED below the bandgap (2.9 eV). From the transient electroluminescence measurement, blue emission totally came from the TTA process without direct recombination on the ADN molecules. The blue singlet exciton from the TTA process can be quenched by energy transfer to the exciplex, as revealed by transient photoluminescence measurements. This can be prevented by blocking the energy transfer path and improving the radiative recombination rate of blue emission. With the insertion of the "triplet diffusion and singlet blocking (TDSB)" layer and the incorporation of the dopant material, an ESTTA-OLED with external quantum efficiency of 5.1% was achieved, which consists of yellow and blue emission coming from the exciplex and ESTTA process, respectively.

15.
ChemSusChem ; 9(12): 1433-41, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27213296

RESUMO

Two donor-acceptor-acceptor (D-A-A)-type molecules incorporating nitrobenzoxadiazole (NBO) as the A-A block and ditolylamine as the D block bridged through a phenylene (PNBO) and a thiophene (TNBO) spacer were synthesized in a one-step coupling reaction. Their electronic, photophysical, and thermal properties; crystallographic analysis; and theoretical calculations were studied to establish a clear structure-property relationship. The results indicate that the quinoidal character of the thiophene bridge strongly governs the structural features and crystal packings (herringbone vs. brickwork) and thus the physical properties of the compounds. PNBO and TNBO were utilized as electron donors combined with C70 as the electron acceptor in the active layer of vacuum-processed bulk heterojunction small-molecule organic solar cells (SMOSCs). The power conversion efficiency of both PNBO- and TNBO-based OSCs exceeded 5 %. The ease of accessibility of PNBO and TNBO demonstrates the potential for simple and economical synthesis of electron donors in vacuum-processed SMOSCs.


Assuntos
Benzeno/química , Fontes de Energia Elétrica , Dióxido de Nitrogênio/química , Energia Solar , Tiofenos/química , Eletroquímica , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...