Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2905, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217499

RESUMO

The century-long development of surface sciences has witnessed the discoveries of a variety of quantum states. In the recently proposed "obstructed atomic insulators", symmetric charges are pinned at virtual sites where no real atoms reside. The cleavage through these sites could lead to a set of obstructed surface states with partial electronic occupation. Here, utilizing scanning tunneling microscopy, angle-resolved photoemission spectroscopy and first-principles calculations, we observe spectroscopic signature of obstructed surface states in SrIn2P2. We find that a pair of surface states that are originated from the pristine obstructed surface states split in energy by a unique surface reconstruction. The upper branch is marked with a striking differential conductance peak followed by negative differential conductance, signaling its localized nature, while the lower branch is found to be highly dispersive. This pair of surface states is in consistency with our calculational results. Our finding not only demonstrates a surface quantum state induced by a new type of bulk-boundary correspondence, but also provides a platform for exploring efficient catalysts and related surface engineering.

2.
Sci Bull (Beijing) ; 68(2): 165-172, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36653217

RESUMO

Topological boundary states emerged at the spatial boundary between topological non-trivial and trivial phases, are usually gapless, or commonly referred as metallic states. For example, the surface state of a topological insulator is a gapless Dirac state. These metallic topological boundary states are typically well described by non-interacting fermions. However, the behavior of topological boundary states with significant electron-electron interactions, which could turn the gapless boundary states into gapped ordered states, e.g., density wave states or superconducting states, is of great interest theoretically, but is still lacking evidence experimentally. Here, we report the observation of incommensurable charge density wave (CDW) formed on the topological boundary states driven by the electron-electron interactions on the (001) surface of CoSi. The wavevector of CDW varies as the temperature changes, which coincides with the evolution of topological surface Fermi arcs with temperature. The orientation of the CDW phase is determined by the chirality of the Fermi arcs, which indicates a direct association between CDW and Fermi arcs. Our finding will stimulate the search of more interactions-driven ordered states, such as superconductivity and magnetism, on the boundaries of topological materials.

3.
ACS Nano ; 16(10): 17087-17096, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227156

RESUMO

One-dimensional (1D) arsenene nanostructures are predicted to host a variety of interesting physical properties including antiferromagnetic, semiconductor-semimetal transition and quantum spin Hall effect, which thus holds great promise for next-generation electronic and spintronic devices. Herein, we devised a surface template strategy in a combination with surface-catalyzed decomposition of molecular As4 cluster toward the synthesis of the superlattice of ultranarrow armchair arsenic nanochains in a large domain on Au(111). In the low annealing temperature window, zero-dimensional As4 nanoclusters are assembled into continuous films through intermolecular van der Waals and molecule-substrate interactions. At the elevated temperature, the subsequent surface-assisted decomposition of molecular As4 nanoclusters leads to the formation of a periodic array of 1D armchair arsenic nanochains that form a (2 × 3) superstructure on the Au(111) surface. These ultranarrow armchair arsenic nanochains are predicted to have a small bandgap of ∼0.50 eV, in contrast to metallic zigzag chains. In addition, the Au-supported arsenic nanochains can be flipped to form a bilayer structure through tip indentation and manipulation, suggesting the possible transfer of these nanochains from the substrate. The successful realization of arsenic nanostructures is expected to advance low-dimensional physics and infrared optoelectronic nanodevices.

4.
J Am Chem Soc ; 142(8): 4051-4060, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017566

RESUMO

Low-cost and earth-abundant PbS-based thermoelectrics are expected to be an alternative for PbTe, and have attracted extensive attentions from thermoelectric community. Herein, a maximum ZT (ZTmax) ≈ 1.3 at 923 K in n-type PbS is obtained through synergistically optimizing quality factor with Sn alloying and PbTe phase incorporation. It is found that Sn alloying in PbS can sharpen the conduction band shape to balance the contradictory interrelationship between carrier mobility and effective mass, accordingly, a peak power factor of ∼19.8 µWcm-1K-2 is achieved. Besides band sharpening, Sn alloying can also narrow the band gap of PbS so as to make the conduction band position between Pb0.94Sn0.06S and PbTe well aligned, which can benefit high carrier mobility. Therefore, incorporating the PbTe phase into the Pb0.94Sn0.06S matrix can not only favorably maintain the carrier mobility at ∼150 cm2V-1s-1 but also suppress the lattice thermal conductivity to ∼0.61 Wm-1K-1 in Pb0.94Sn0.06S-8%PbTe, which contributes to a largely enhanced quality factor. Consequently, an average ZT (ZTave) ≈ 0.72 in 300-923 K is achieved in Pb0.94Sn0.06S-8%PbTe that outperforms other n-type PbS-based thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...