Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
World J Gastrointest Oncol ; 16(3): 659-669, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577461

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of less than 10%, owing to its late-stage diagnosis. Early detection of pancreatic cancer (PC) can significantly increase survival rates. AIM: To identify the serum biomarker signatures associated with early-stage PDAC by serum N-glycan analysis. METHODS: An extensive patient cohort was used to determine a biomarker signature, including patients with PDAC that was well-defined at an early stage (stages I and II). The biomarker signature was derived from a case-control study using a case-cohort design consisting of 29 patients with stage I, 22 with stage II, 4 with stage III, 16 with stage IV PDAC, and 88 controls. We used multiparametric analysis to identify early-stage PDAC N-glycan signatures and developed an N-glycan signature-based diagnosis model called the "Glyco-model". RESULTS: The biomarker signature was created to discriminate samples derived from patients with PC from those of controls, with a receiver operating characteristic area under the curve of 0.86. In addition, the biomarker signature combined with cancer antigen 19-9 could discriminate patients with PDAC from controls, with a receiver operating characteristic area under the curve of 0.919. Glyco-model demonstrated favorable diagnostic performance in all stages of PC. The diagnostic sensitivity for stage I PDAC was 89.66%. CONCLUSION: In a prospective validation study, this serum biomarker signature may offer a viable method for detecting early-stage PDAC.

2.
Heliyon ; 10(8): e28787, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628705

RESUMO

Genetic diseases are currently diagnosed by functional mutations. However, only some mutations are associated with disease. It is necessary to establish a quick prediction model for clinical screening. Pathogenic mutations in NGLY1 cause a rare autosomal recessive disease known as congenital disorder of deglycosylation (NGLY1-CDDG). Although NGLY1-CDDG can be diagnosed through gene sequencing, clinical relevance of a detected mutation in NGLY1 needs to be further confirmed. In this study, taken NGLY1-CDDG as an example, a comprehensive and practical predictive model for pathogenic mutations on NGLY1 through an NGLY1/Glycopeptide complex model was constructed, the binding sites of NGLY1 and glycopeptides were simulated, and an in vitro enzymatic assay system was established to facilitate quick clinical decisions for NGLY1-CDDG patients. The docking model covers 42 % of reported NGLY1-CDDG missense mutations (5/12). All reported mutations were subjected to in vitro enzymatic assay in which 18 mutations were dysfunctional (18/30). In addition, a full spectrum of functional R328 mutations was assayed and 11 mutations were dysfunctional (11/19). In this study, a model of NGLY1 and glycopeptides was built for potential functional mutations in NGLY1. In addition, the effect of potential regulatory compounds, including N-acetyl-l-cysteine and dithiothreitol, on NGLY1 was examined. The established in vitro assay may serve as a standard protocol to facilitate rapid diagnosis of all mutations in NGLY1-CDDG. This method could also be applied as a comprehensive and practical predictive model for the other rare genetic diseases.

3.
Comput Math Methods Med ; 2022: 7034670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720026

RESUMO

Objective: To explore the effect of hospital-family rehabilitation intervention on walking function and lower limb surface electromyography in children with cerebral palsy (CP). Methods: About 100 children with CP treated in our hospital from February 2019 to April 2021 were enrolled. The patients were randomly assigned into control group and study group. The control group received routine intervention, and the study group received hospital-family rehabilitation intervention. The intervention effect, GMFM88 scale score, IMMG value, CR value, lower limb surface EMG value, and compliance of gastrocnemius muscle and tibialis anterior muscle were compared. Results: First of all, we compared the intervention effects. In the study group, 43 cases were markedly effective, 5 cases were effective, 1 case was improved, 1 case was ineffective, and the effective rate was 98.00%. In the control group, 22 cases were markedly effective, 14 cases were effective, 7 cases were improved, 7 cases were ineffective, and the effective rate of 86.00%. The intervention effect of the study group was better compared to the control group (P < 0.05). Secondly, we compared the scores of the GMFM88 scale. The scores of D area and E area and total score of the study group were higher compared to the control group (P < 0.05). The IEMG values of gastrocnemius muscle and tibialis anterior muscle were compared, and the IMMG values of passive and active gastrocnemius muscle and tibialis anterior muscle in the study group were higher compared to the control group (P < 0.05). There exhibited no significant difference in CR value before intervention (P > 0.05). After intervention, the CR values of gastrocnemius muscle and tibialis anterior muscle in the study group were significantly lower compared to the control group (P < 0.05). In terms of the surface EMG of lower limbs, the EMG value of passive activity (gastrocnemius muscle, tibialis anterior muscle) in the study group was higher compared to the control group, and the EMG value of active activity was significantly lower compared to the control group (P < 0.05). Finally, we compared the compliance. In the study group, there were 43 cases of complete compliance, 7 cases of compliance, and 0 cases of noncompliance, with a compliance rate of 100.00%. In the control group, there were 32 cases of complete compliance, 11 cases of compliance, and 7 cases of noncompliance with a compliance rate of 86.00%. The compliance rate of the study group was better compared to the control group (P < 0.05). Conclusion: The intervention of hospital-family rehabilitation model is helpful to improve the self-care ability, cognitive function, and daily activities of children with CP, enhance the walking function and lower limb surface electromyography of children with SCP, and strengthen their qualities of life.


Assuntos
Paralisia Cerebral , Paralisia Cerebral/terapia , Criança , Eletromiografia , Hospitais , Humanos , Extremidade Inferior , Músculo Esquelético , Caminhada/fisiologia
4.
Fish Physiol Biochem ; 48(3): 555-570, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35461391

RESUMO

Excessive lipid deposition in farmed fish is a challenge in the aquaculture industry. To study the effect of dietary calcium pyruvate (CaP) on lipid accumulation in fish, we used a high fat diet (HFD) to establish a lipid accumulation model in juvenile golden pompano (Trachinotus ovatus) and supplemented with 0%, 0.25%, 0.50%, 0.75% and 1.0% CaP (diets D0-D4, respectively). After 8-week feeding in floating cages, dietary CaP significantly improved growth performance, which peaked in fish fed diet D3. Supplementation of CaP significantly decreased whole body lipid content in fish fed D2-D4 and hepatosomatic index and liver lipid content in fish fed D3 and D4. Serum and hepatic antioxidant indices, including glutathione, catalase and superoxide dismutase, showed generally increasing trends in fish fed diets with CaP. In addition, increasing dietary CaP increasingly reduced hepatic activities of hexokinase, phosphofructokinase and pyruvate kinase involved in glycolysis, and increased glycogen contents of the liver and muscle. Dietary CaP up-regulated the liver mRNA expression of pparα, cpt1, hsl and fabp1, but down-regulated expression of srebp-1, fas and acc. In conclusion, 0.75% CaP improved growth performance and reduced excessive lipid deposition by affecting fatty acid synthesis and lipolysis in juvenile T. ovatus fed HFD.


Assuntos
Dieta Hiperlipídica , Perciformes , Ração Animal/análise , Animais , Cálcio da Dieta/metabolismo , Cálcio da Dieta/farmacologia , Dieta , Suplementos Nutricionais , Peixes , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/metabolismo , Perciformes/metabolismo , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia
5.
Mitochondrial DNA B Resour ; 7(4): 644-645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425859

RESUMO

Dendrobium findlayanum Par. et Rchb. f. 1874 has the high ornamental and medicinal value. Here, we report the first complete chloroplast genome of D. findlayanum. The complete chloroplast genome of D. findlayanum is 153,713 bp in length with 120 genes, including 75 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The total content of GC of the whole genome is 37.46%. Phylogenetic analysis indicated that D. findlayanum was closely related to other species in Dendrobium, and this study provides new genetic resources for species identification and phylogenetic analyses in Dendrobium.

6.
Front Pediatr ; 10: 806752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311058

RESUMO

Background: Alkuraya-Kucinskas syndrome is an autosomal recessive disorder characterized by brain abnormalities associated with cerebral parenchymal underdevelopment, arthrogryposis, club foot, and global developmental delay. Most reported cases were cases of premature termination of pregnancies or neonatal deaths. To date, limited studies of nine surviving patients with global developmental delay and intellectual disability have been reported. In this study, we report another surviving patient. Methods: Whole-exome sequencing was utilized for the proband, and variants were filtered, annotated, and classified. Candidate variants were validated by Sanger sequencing of the proband and his family. The literature was reviewed; the prognosis among different regions and the variant type was analyzed. Results: A non-synonymous variant [NM_015312.3: exon29: c.4892C>G (p.Pro1631Arg)] was identified and validated in the patient's father. A frameshift duplication [NM_015312.3: exon62: c.10872dupA (p.Arg3625Lysfs*5)] that caused early translation termination was identified in his mother. The literature was reviewed, variants were classified into three regions of KIAA1109, and their survival status was summarized. Conclusion: We reported another survival proband with Alkuraya-Kucinskas syndrome driven by KIAA1109. Our case expands the genotypic spectrum of Alkuraya-Kucinskas syndrome and explored the relationship between the variant region and survival.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35321854

RESUMO

Insulin is well known an important metabolic regulator in glucose and lipid metabolism. It has been proved to activate long-chain (≥ C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis in mammals, but little is known about such a role in fish. To explore the effects and molecular mechanisms of insulin in fish LC-PUFA biosynthesis, we treated the rabbitfish S. canaliculatus hepatocyte line (SCHL) cells with 65 nM insulin for 12 h, and the results showed that the mRNA levels of genes encoding the key enzymes and transcription factor involved in rabbitfish LC-PUFA biosynthesis such as Δ6Δ5 fads2, elovl5 and srebp1, as well as those of PI3K pathway genes including pdk1, akt2 and mtor increased significantly. Moreover, SCHL cells treated with different PI3K/Akt pathway inhibitors (LY294002, Wortmannin, AKTi-1/2) alone or combined with insulin decreased the mRNA levels of PI3K/Akt/mTOR downstream signaling genes, including Δ6Δ5 fads2, Δ4 fads2, elovl5, elovl4 and srebp1. While PI3K/Akt agonists (740 Y-P, IGF-1, SC-79) had the opposite results. The results of fatty acid composition analysis of hepatocytes showed that insulin stimulation increased the Δ6Δ5 Fads2-dependent PUFA desaturation indexes, while Elovl5-dependent PUFA elongation indexes had upward trends, and consequently LC-PUFA contents increased. Taken together, these results indicated that insulin activated LC-PUFA biosynthesis probably through PI3K/Akt/mTOR/Srebp1 pathway in S. canaliculatus hepatocytes.


Assuntos
Proteínas de Peixes , Fosfatidilinositol 3-Quinases , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Bioelectrochemistry ; 141: 107880, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34229181

RESUMO

Microbiologically influenced corrosion (MIC) is one of the reasons leading to the service failure of pipelines buried in the soil. The effects of sulfate-reducing bacteria (SRB) on steel corrosion without organic carbon are not clear. In this work, SRB cells were enriched in the simulated soil solution, aiming to study SRB corrosion behavior without organic carbon source using weight loss, electrochemical measurements, and surface analysis. Effects of DO on SRB corrosion were also studied. Results indicate that SRB can survive after 14 days of incubation without organic carbon source, but approximately 90% SRB have died. SRB without organic carbon source could inhibit the uniform corrosion but enhance the pitting corrosion compared with the control specimen. The corrosion rate of the control calculated from weight loss is highest with a value of (0.081 ± 0.013) mm/y. The highest localized corrosion rate of (0.306 ± 0.006) mm/y is obtained with an initial SRB count of 107 cells/mL. The presence of DO influences the steel corrosion process. Oxygen corrosion dominates for the specimens in the absence and presence of SRB with an initial count of 103 cells/mL, while SRB MIC is primary for the specimens with high SRB counts.


Assuntos
Desulfovibrio desulfuricans/metabolismo , Microbiologia do Solo , Solo/química , Aço/química , Contagem de Colônia Microbiana , Corrosão , Espectroscopia Dielétrica , Microscopia Eletrônica de Varredura , Oxigênio/metabolismo , Sulfatos/metabolismo , Propriedades de Superfície
9.
Anal Bioanal Chem ; 413(16): 4255-4265, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33988741

RESUMO

Anderson-type polyoxometalate containing Fe3+ and Mo6+, (NH4)3[H6Fe(III)Mo6O24] (FeMo6), was found to work as an oxidase-mimicking nanoenzyme for the first time, exhibiting the ability of catalytic oxidation of o-phenylenediamine (OPD), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTs), and 3,3',5,5'-tetramethylbenzidine (TMB), which features easy synthesis, low cost, simple operation, and low consumption. Attributed to the nature of FeMo6 and Fenton-like effect, a novel sensor based on two consecutive "turn on" fluorescence was developed for detecting dopamine (DA) by employing the FeMo6-OPD system, and the linear range was from 1 to 100 µM with the detection limit 0.0227 µM (3σ/s). Moreover, to increase oxidase-mimic activity of FeMo6, reduced graphene oxide (rGO) loading FeMo6 composites (FeMo6@rGO (n), n = 5%, 10%, 15%) was fabricated, and results show that oxidase-like activities of FeMo6@rGO (n) are dependent on the mass ratio of FeMo6/rGO, and FeMo6@rGO (10%) exhibits the highest oxidase-mimic activity and the fastest respond time (4 min) among all reported oxidase mimic of DA to date. Graphical abstract Anderson-type Mo-POMs FeMo6 was found to work as an oxidase-mimicking nanoenzyme for the first time and was used to detect DA for two consecutive "turn on" fluorescence sensor modes.


Assuntos
Ânions/química , Dopamina/sangue , Polieletrólitos/química , Materiais Biomiméticos/química , Dopamina/análise , Grafite/química , Humanos , Ferro/química , Molibdênio/química , Oxirredução , Oxirredutases/química , Espectrometria de Fluorescência/métodos
10.
Prog Lipid Res ; 82: 101095, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33741387

RESUMO

Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C20-24), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C18 PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.


Assuntos
Ácidos Graxos Ômega-3 , MicroRNAs , Animais , Ácidos Graxos Dessaturases/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes , Regulação da Expressão Gênica , Humanos
11.
J Agric Food Chem ; 68(51): 15123-15133, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33291871

RESUMO

Fish, particularly marine species, are considered as the major source of long-chain polyunsaturated fatty acids (LC-PUFA) in the human diet. The extent to which fish can synthesize LC-PUFA varies with species and is regulated by dietary fatty acids and ambient salinity. Therefore, to enable fish to produce more LC-PUFA, comprehending the mechanisms underlying the regulation of LC-PUFA biosynthesis is necessary. Here, the regulatory roles of miR-145 were investigated in the marine teleost rabbitfish Siganus canaliculatus. The hepatic abundance of miR-145 was lower in rabbitfish reared in low salinity (10 ppt) in comparison with that of those cultured in seawater (32 ppt), while the opposite pattern was observed for the transcripts of the transcription factor hepatocyte nuclear factor 4 alpha (Hnf4α), known to affect rabbitfish LC-PUFA biosynthesis. Rabbitfish hnf4α was identified as a target of miR-145 by luciferase reporter assays, and overexpression of miR-145 in the S. canaliculatus hepatocyte line (SCHL) markedly reduced the expression of Hnf4α and its target genes involved in LC-PUFA biosynthesis, namely, Δ4 fads2, Δ6Δ5 fads2, and elovl5. The opposite pattern was observed when miR-145 was knocked down in SCHL cells, with these effects being attenuated by subsequent hnf4α knockdown. Moreover, increasing endogenous Hnf4α by the knockdown of miR-145 increased the expression of LC-PUFA biosynthesis genes and enhanced the synthesis of LC-PUFA in both SCHL cells and rabbitfish in vivo. This is the first report to identify miR-145 as a key effector of LC-PUFA biosynthesis by targeting hnf4α, providing a novel insight into the mechanisms of the regulation of LC-PUFA biosynthesis in vertebrates.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Proteínas de Peixes/metabolismo , Peixes/genética , Fator 4 Nuclear de Hepatócito/metabolismo , MicroRNAs/metabolismo , Animais , Linhagem Celular , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Proteínas de Peixes/genética , Peixes/metabolismo , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Fígado/metabolismo , MicroRNAs/genética
12.
J Biol Chem ; 295(40): 13875-13886, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32759307

RESUMO

MicroRNAs have been recently shown to be important regulators of lipid metabolism. However, the mechanisms of microRNA-mediated regulation of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis in vertebrates remain largely unknown. Herein, we for the first time addressed the role of miR-26a in LC-PUFA biosynthesis in the marine rabbitfish Siganus canaliculatus The results showed that miR-26a was significantly down-regulated in liver of rabbitfish reared in brackish water and in S. canaliculatus hepatocyte line (SCHL) incubated with the LC-PUFA precursor α-linolenic acid, suggesting that miR-26a may be involved in LC-PUFA biosynthesis because of its abundance being regulated by factors affecting LC-PUFA biosynthesis. Opposite patterns were observed in the expression of liver X receptor α (lxrα) and sterol regulatory element-binding protein-1 (srebp1), as well as the LC-PUFA biosynthesis-related genes (Δ4 fads2, Δ6Δ5 fads2, and elovl5) in SCHL cells incubated with α-linolenic acid. Luciferase reporter assays revealed rabbitfish lxrα as a target of miR-26a, and overexpression of miR-26a in SCHL cells markedly reduced protein levels of Lxrα, Srebp1, and Δ6Δ5 Fads2 induced by the agonist T0901317. Moreover, increasing endogenous Lxrα by knockdown of miR-26a facilitated Srebp1 activation and concomitant increased expression of genes involved in LC-PUFA biosynthesis and consequently promoted LC-PUFA biosynthesis both in vitro and in vivo These results indicate a critical role of miR-26a in regulating LC-PUFA biosynthesis through targeting the Lxrα-Srebp1 pathway and provide new insights into the regulatory network controlling LC-PUFA biosynthesis and accumulation in vertebrates.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Receptores X do Fígado/metabolismo , MicroRNAs/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Linhagem Celular , Ácidos Graxos Insaturados/genética , Proteínas de Peixes/genética , Peixes/genética , Hepatócitos/metabolismo , Receptores X do Fígado/genética , MicroRNAs/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
13.
J Surg Oncol ; 122(5): 941-948, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32682330

RESUMO

OBJECTIVE: This study aimed to investigate the association between different metastatic sites and survival in endometrial cancer (EC) patients with International Federation of Gynecology and Obstetrics (FIGO) stage IVB disease. METHODS: FIGO stage IVB patients with EC were selected from the surveillance, epidemiology, and end results database. Overall survival (OS) and cause-specific survival (CSS) were analyzed with Kaplan-Meier analysis and log-rank tests. Univariate and multivariate Cox proportional hazard models were used to identify the prognostic factors for OS and CSS. RESULTS: A total of 929 FIGO stage IVB patients with EC were identified. Patients with peritoneum metastasis were associated with significantly better OS and CSS compared to those with organ-specific metastasis (median OS: 29 vs 19 months, P = .005; median CSS: 47 vs 25 months, P < .001). Moreover, the survival superiority of peritoneum metastasis remained significant when organ-specific metastasis was further classified into specific single-organ metastasis. The multivariate analysis also indicated that compared with peritoneum metastasis, bone, brain, and lung metastasis were independent prognostic factors for worse OS. Similarly, distant lymph node, bone, brain, liver, and lung metastasis were associated with worse CSS. CONCLUSION: Metastatic sites affected prognosis in FIGO stage IVB patients with EC. Patients with peritoneum metastasis had significantly better survival outcomes than those with organ-specific metastasis.


Assuntos
Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Programa de SEER , Taxa de Sobrevida , Estados Unidos/epidemiologia
14.
Mar Biotechnol (NY) ; 22(4): 475-487, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32418070

RESUMO

Post-transcriptional regulatory mechanisms play important roles in the regulation of long-chain (≥ C20) polyunsaturated fatty acid (LC-PUFA) biosynthesis. Here, we address a potentially important role of the miR-15/16 cluster in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. In rabbitfish, miR-15 and miR-16 were both highly responsive to fatty acids affecting LC-PUFA biosynthesis and displayed a similar expression pattern in a range of rabbitfish tissues. A common potential binding site for miR-15 and miR-16 was predicted in the 3'UTR of peroxisome proliferator-activated receptor gamma (pparγ), an inhibitor of LC-PUFA biosynthesis in rabbitfish, and luciferase reporter assays revealed that pparγ was a potential target of miR-15/16 cluster. In vitro individual or co-overexpression of miR-15 and miR-16 in rabbitfish hepatocyte line (SCHL) inhibited both mRNA and protein levels of Pparγ, and increased the mRNA levels of Δ6Δ5 fads2, Δ4 fads2, and elovl5, key enzymes of LC-PUFA biosynthesis. Inhibition of pparγ was more pronounced with co-overexpression of miR-15 and miR-16 than with individual overexpression in SCHL. Knockdown of miR-15/16 cluster gave opposite results, and increased mRNA levels of LC-PUFA biosynthesis enzymes were observed after knockdown of pparγ. Furthermore, miR-15/16 cluster overexpression significantly increased the contents of 22:6n-3, 20:4n-6 and total LC-PUFA in SCHL with higher 18:4n-3/18:3n-3 and 22:6n-3/22:5n-3 ratio. These suggested that miR-15 and miR-16 as a miRNA cluster together enhanced LC-PUFA biosynthesis by targeting pparγ in rabbitfish. This is the first report of the participation of miR-15/16 cluster in LC-PUFA biosynthesis in vertebrates.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Peixes/genética , MicroRNAs/genética , PPAR gama/genética , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , MicroRNAs/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/metabolismo
15.
World J Gastroenterol ; 26(10): 1067-1079, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32205997

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is the primary cause of hepatitis with chronic HBV infection, which may develop into liver fibrosis, cirrhosis and hepatocellular carcinoma. Detection of early-stage fibrosis related to HBV infection is of great clinical significance to block the progression of liver lesion. Direct liver biopsy is regarded as the gold standard to detect and assess fibrosis; however, this method is invasive and prone to clinical sampling error. In order to address these issues, we attempted to find more convenient and effective serum markers for detecting HBV-induced early-stage liver fibrosis. AIM: To investigate serum N-glycan profiling related to HBV-induced liver fibrosis and verify multiparameter diagnostic models related to serum N-glycan changes. METHODS: N-glycan profiles from the sera of 432 HBV-infected patients with liver fibrosis were analyzed. Significant changed N-glycan levels (peaks) (P < 0.05) in different fibrosis stages were selected in the modeling group, and multiparameter diagnostic models were established based on changed N-glycan levels by logistic regression analysis. The receiver operating characteristic (ROC) curve analysis was performed to evaluate diagnostic efficacy of N-glycans models. These models were then compared with the aspartate aminotransferase to platelet ratio index (APRI) , fibrosis index based on the four factors (FIB-4), glutamyltranspeptidase platelet albumin index (S index), GlycoCirrho-test, and GlycoFibro-test. Furthermore, we combined multiparameter diagnostic models with alanine aminotransferase (ALT) and platelet (PLT) tests and compared their diagnostic power. In addition, the diagnostic accuracy of N-glycan models was also verified in the validation group of patients. RESULTS: Multiparameter diagnostic models constructed based on N-glycan peak 1, 3, 4 and 8 could distinguish between different stages of liver fibrosis. The area under ROC curves (AUROCs) of Model A and Model B were 0.890 and 0.752, respectively differentiating fibrosis F0-F1 from F2-F4, and F0-F2 from F3-F4, and surpassing other serum panels. However, AUROC (0.747) in Model C used for the diagnosis of F4 from F0-F3 was lower than AUROC (0.795) in FIB-4. In combination with ALT and PLT, the multiparameter models showed better diagnostic power (AUROC = 0.912, 0.829, 0.885, respectively) when compared with other models. In the validation group, the AUROCs of the three combined models (0.929, 0.858, and 0.867, respectively) were still satisfactory. We also applied the combined models to distinguish adjacent fibrosis stages of 432 patients (F0-F1/F2/F3/F4), and the AUROCs were 0.917, 0.720 and 0.785. CONCLUSION: Multiparameter models based on serum N-glycans are effective supplementary markers to distinguish between adjacent fibrosis stages of patients caused by HBV, especially in combination with ALT and PLT.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica/sangue , Cirrose Hepática/diagnóstico , Testes de Função Hepática/estatística & dados numéricos , Polissacarídeos/sangue , Adulto , Alanina Transaminase/sangue , Área Sob a Curva , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Feminino , Glicosilação , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia , Humanos , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Polissacarídeos/química , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos
16.
Chem Asian J ; 14(19): 3424-3430, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502402

RESUMO

To increase the conductivity of polyoxometalate-based metal-organic frameworks (POMOFs) and promote their applications in the field of energy storage, herein, a simple approach was employed to improve their overall electrochemical performances by introducing a functionalized single-walled carbon nanotubes (SWNT-COOH). A new POMOF compound, [Cu18 (trz)12 Cl3 (H2 O)2 ][PW12 O40 ] (CuPW), was successfully synthesized, then the size-matched functionalized SWNT-COOH was introduced to fabricate CuPW/SWNT-COOH composite (PMNT-COOH) by employing a simple sonication-driven periodic functionalization strategy. When the PMNT-COOH nanocomposite was used as the anode material for Lithium-ion batteries (LIBs), PMNT-COOH(3) (CuPWNC:SWNT-COOH=3:1) showed superior behavior of energy storage, a high reversible capacity of 885 mA h g-1 up to a cycle life of 170 cycles. The electrochemical results indicate that the uniform packing of SWNT-COOH provided a favored contact between the electrolyte and the electrode, resulting in enhanced specific capacity during lithium insertion/extraction process. This fabrication of PMNT-COOH nanocomposite opens new avenues for the design and synthesis of new generation electrode materials for LIBs.

17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(5): 619-628, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30684680

RESUMO

Recently, microRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism. However, the miRNA-mediated regulatory mechanism on long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis in vertebrates remains largely unknown. Here, we address a potentially important role of miRNA-24 (miR-24) in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. miR-24 showed significantly higher abundance in liver of rabbitfish reared in brackish water than in seawater for fish fed vegetable oil diets and in S. canaliculatus hepatocyte line (SCHL) cells incubated with alpha-linolenic acid (ALA) than the control group. Similar expression patterns were also observed on the expression of sterol regulatory element-binding protein-1 (srebp1) and LC-PUFA biosynthesis related genes. While opposite results were observed on the expression of insulin-induced gene 1 (insig1), an endoplasmic reticulum membrane protein blocking Srebp1 proteolytic activation. Luciferase reporter assays revealed rabbitfish insig1 as a target of miR-24. Knockdown of miR-24 in SCHL cells resulted in increased Insig1 protein, and subsequently reduced mature Srebp1 protein and expression of genes required for LC-PUFA biosynthesis, and these effects could be attenuated after additional insig1 knockdown. Opposite results were observed with overexpression of miR-24. Moreover, increasing endogenous insig1 by knockdown of miR-24 inhibited Srebp1 processing and consequently suppressed LC-PUFA biosynthesis in rabbitfish hepatocytes. These results indicate a potentially critical role for miR-24 in regulating LC-PUFA biosynthesis through the Insig1/Srebp1 pathway by targeting insig1. This is the first report of miR-24 involved in LC-PUFA biosynthesis and thus may provide knowledge on the regulatory mechanisms of LC-PUFA biosynthesis in vertebrates.


Assuntos
Ácidos Graxos Insaturados/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Perciformes/genética , Animais , Vias Biossintéticas , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hepatócitos/metabolismo , MicroRNAs/metabolismo , Perciformes/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ácido alfa-Linolênico/genética , Ácido alfa-Linolênico/metabolismo
18.
Br J Nutr ; 121(4): 374-383, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30621805

RESUMO

To compare the growth and biosynthetic ability of long-chain PUFA (LC-PUFA) of the genetically improved farmed tilapia (GIFT) (Oreochromis niloticus) in different water salinities, an 8-week feeding trial was conducted on the GIFT juveniles at 0, 12 and 24 ‰ (parts per thousand; ppt), respectively, with three isonitrogenous (32 %) and isolipidic (8 %) diets (D1-D3). Diet D1 with fish oils (rich in LC-PUFA) as lipid source was used as the control, while D2 and D3 with vegetable oil (free LC-PUFA) blends as lipid source contained different ratios of linoleic acid (LA, 18 : 2n-6) and α-linolenic acid (ALA, 18 : 3n-3) at 4·04 (D2) and 0·54 (D3), respectively. At the end of feeding trial, the growth performance of D2 and D3 groups under all salinity treatments was as good as that of D1 group, which indicates that the GIFT juveniles may convert dietary LA and ALA into LC-PUFA to meet the requirement of essential fatty acids for normal growth and physiology. When fed the same diets, GIFT at 12 ppt had a better growth performance coupled with a higher liver and muscle arachidonic acid content than those in freshwater. Furthermore, brackish water (24 ppt) significantly promoted the mRNA levels of elongase 5 of very long-chain fatty acids (elovl5) and peroxisome proliferator-activated receptor α (pparα) in liver, when compared with freshwater. These results suggest that the GIFT may display better growth performance together with a relatively higher endogenous LC-PUFA biosynthetic ability under brackish water (12 and 24 ppt), probably through improving the expression of elovl5 and pparα in liver.


Assuntos
Aquicultura/métodos , Dieta/métodos , Ácidos Graxos Insaturados/biossíntese , Salinidade , Tilápia/crescimento & desenvolvimento , Ração Animal/análise , Animais , Animais Geneticamente Modificados , Elongases de Ácidos Graxos/metabolismo , Óleos de Peixe/administração & dosagem , Fígado/metabolismo , PPAR alfa/metabolismo , Óleos de Plantas/administração & dosagem , Tilápia/genética
19.
Int J Mol Sci ; 19(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332813

RESUMO

The rabbitfish Siganus canaliculatus is the first marine teleost shown to be able to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors catalyzed by two fatty acyl desaturases (fad) including Δ4 Fad and Δ6/Δ5 Fad as well as two elongases (Elovl4 and Elovl5). Previously, hepatocyte nuclear factor 4α (Hnf4α) was demonstrated to be predominant in the transcriptional regulation of two fads. To clarify the regulatory mechanisms involved in rabbitfish lipogenesis, the present study focused on the regulatory role of Hnf4α to elovl5 expression and LC-PUFA biosynthesis. Bioinformatics analysis predicted two potential Hnf4α elements in elovl5 promoter, one binding site was confirmed to interact with Hnf4α by gel shift assays. Moreover, overexpression of hnf4α caused a remarkable increase both in elovl5 promoter activity and mRNA contents, while knock-down of hnf4α in S. canaliculatus hepatocyte line (SCHL) resulted in a significant decrease of elovl5 gene expression. Meanwhile, hnf4α overexpression enhanced LC-PUFA biosynthesis in SCHL cell, and intraperitoneal injection to rabbitfish juveniles with Hnf4α agonists (Alverine and Benfluorex) increased the expression of hnf4α, elvol5 and Δ4 fad, coupled with an increased proportion of total LC-PUFA in liver. The results demonstrated that Hnf4α is involved in LC-PUFA biosynthesis by up-regulating the transcription of the elovl5 gene in rabbitfish, which is the first report of Hnf4α as a transcription factor of the elovl5 gene in vertebrates.


Assuntos
Acetiltransferases/genética , Ácidos Graxos Insaturados/biossíntese , Peixes/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Região 5'-Flanqueadora/genética , Acetiltransferases/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Ácidos Graxos Dessaturases/metabolismo , Técnicas de Silenciamento de Genes , Fator 4 Nuclear de Hepatócito/agonistas , Injeções Intraperitoneais , Regiões Promotoras Genéticas
20.
Gene ; 676: 306-314, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30145362

RESUMO

Rabbitfish Siganus canaliculatus is the first marine teleost demonstrated to have the ability to synthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, and thus provides us a unique model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. MicroRNAs (miRNAs) were shown to play important roles in the regulation of LC-PUFA biosynthesis in rabbitfish at posttranscriptional level in our previous studies. Here, we focused the roles of miR-146a in such regulation. The expression of miR-146a displayed an inverse pattern with that of elongase 5 (Elovl5), a key enzyme catalyzing the elongation of C18 (18:4n3 and 18:3n6) and C20 (20:5n3 and 20:4n6) PUFA in the LC-PUFA biosynthesis, in vivo in liver of rabbitfish reared under different salinities, as well as in vitro in S. canaliculatus hepatocyte line (SCHL) cells incubated with different fatty acids. Bioinformatics analysis predicted that miR-146a may target the 3'UTR of elovl5 directly, which was confirmed by the dual luciferase reporter assays in HEK 293T cells. Overexpression of miR-146a significantly downregulated the expression of elovl5 in SCHL cells, while knockdown of miR-146a showed an opposite effect. Moreover, up-regulation of miR-146a in SCHL cells significantly suppressed the elongation indexes 20:3n6/18:3n6, 20:4n3/18:4n3 and 22:5n3/20:5n3 associated with Elovl5 catalyzing activity, and consequently reduced the contents of LC-PUFA. These results indicate that miR-146a is involved in the regulation of LC-PUFA biosynthesis through inhibiting the mRNA expression and activity of Elovl5 in rabbitfish, which was for the first time to focus on the role of miR-146a in LC-PUFA biosynthesis in vertebrates and will provide a new insight into the regulatory mechanisms of LC-PUFA biosynthesis in teleosts.


Assuntos
Acetiltransferases/genética , Peixes/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/biossíntese , Proteínas de Peixes/genética , Peixes/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...