Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1119743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035200

RESUMO

Background: Architectural distortion (AD) is a common imaging manifestation of breast cancer, but is also seen in benign lesions. This study aimed to construct deep learning models using mask regional convolutional neural network (Mask-RCNN) for AD identification in full-field digital mammography (FFDM) and evaluate the performance of models for malignant AD diagnosis. Methods: This retrospective diagnostic study was conducted at the Second Affiliated Hospital of Guangzhou University of Chinese Medicine between January 2011 and December 2020. Patients with AD in the breast in FFDM were included. Machine learning models for AD identification were developed using the Mask RCNN method. Receiver operating characteristics (ROC) curves, their areas under the curve (AUCs), and recall/sensitivity were used to evaluate the models. Models with the highest AUCs were selected for malignant AD diagnosis. Results: A total of 349 AD patients (190 with malignant AD) were enrolled. EfficientNetV2, EfficientNetV1, ResNext, and ResNet were developed for AD identification, with AUCs of 0.89, 0.87, 0.81 and 0.79. The AUC of EfficientNetV2 was significantly higher than EfficientNetV1 (0.89 vs. 0.78, P=0.001) for malignant AD diagnosis, and the recall/sensitivity of the EfficientNetV2 model was 0.93. Conclusion: The Mask-RCNN-based EfficientNetV2 model has a good diagnostic value for malignant AD.

2.
Front Oncol ; 12: 880150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35515107

RESUMO

Purpose: To compare the mammographic malignant architectural distortion (AD) detection performance of radiologists who read mammographic examinations unaided versus those who read these examinations with the support of artificial intelligence (AI) systems. Material and Methods: This retrospective case-control study was based on a double-reading of clinical mammograms between January 2011 and December 2016 at a large tertiary academic medical center. The study included 177 malignant and 90 benign architectural distortion (AD) patients. The model was built based on the ResNeXt-50 network. Algorithms used deep learning convolutional neural networks, feature classifiers, image analysis algorithms to depict AD and output a score that translated to malignant. The accuracy for malignant AD detection was evaluated using area under the curve (AUC). Results: The overall AUC was 0.733 (95% CI, 0.673-0.792) for Reader First-1, 0.652 (95% CI, 0.586-0.717) for Reader First-2, and 0.655 (95% CI, 0.590-0.719) for Reader First-3. and the overall AUCs for Reader Second-1, 2, 3 were 0.875 (95% CI, 0.830-0.919), 0.882 (95% CI, 0.839-0.926), 0.884 (95% CI, 0.841-0.927),respectively. The AUCs for all the reader-second radiologists were significantly higher than those for all the reader-first radiologists (Reader First-1 vs. Reader Second-1, P= 0.004). The overall AUC was 0.792 (95% CI, 0.660-0.925) for AI algorithms. The combination assessment of AI algorithms and Reader First-1 achieved an AUC of 0.880 (95% CI, 0.793-0.968), increased than the Reader First-1 alone and AI algorithms alone. AI algorithms alone achieved a specificity of 61.1% and a sensitivity of 80.6%. The specificity for Reader First-1 was 55.5%, and the sensitivity was 86.1%. The results of the combined assessment of AI and Reader First-1 showed a specificity of 72.7% and sensitivity of 91.7%. The performance showed significant improvements compared with AI alone (p<0.001) as well as the reader first-1 alone (p=0.006). Conclusion: While the single AI algorithm did not outperform radiologists, an ensemble of AI algorithms combined with junior radiologist assessments were found to improve the overall accuracy. This study underscores the potential of using machine learning methods to enhance mammography interpretation, especially in remote areas and primary hospitals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...