Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38869597

RESUMO

Two-dimensional (2D) materials promise advances in electronic devices beyond Moore's scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept that utilizes the quantum capacitance of junctions between 2D materials and molecular layers. We realized a variable capacitance 2D molecular junction (vc2Dmj) diode through the scalable integration of graphene and single layers of stearic acid. The vc2Dmj exhibits NDR with a substantial peak-to-valley ratio even at room temperature and an active negative resistance region. The origin of this unique behavior was identified through thermoelectric measurements and ab initio calculations to be a hybridization effect between graphene and the molecular layer. The enhancement of device parameters through morphology optimization highlights the potential of our approach toward new functionalities that advance the landscape of future electronics.

2.
Nanoscale Horiz ; 9(6): 946-955, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38456521

RESUMO

Molybdenum disulfide (MoS2) has emerged as a promising material for catalysis and sustainable energy conversion. However, the inertness of its basal plane to electrochemical reactions poses challenges to the utilization of wafer-scale MoS2 in electrocatalysis. To overcome this limitation, we present a technique that enhances the catalytic activity of continuous MoS2 by preferentially activating its buried grain boundaries (GBs). Through mild UV irradiation, a significant enhancement in GB activity was observed that approaches the values for MoS2 edges, as confirmed by a site-selective photo-deposition technique and micro-electrochemical hydrogen evolution reaction (HER) measurements. Combined spectroscopic characterization and ab-initio simulation demonstrates substitutional oxygen functionalization at the grain boundaries to be the origin of this selective catalytic enhancement by an order of magnitude. Our approach not only improves the density of active sites in MoS2 catalytic processes but yields a new photocatalytic conversion process. By exploiting the difference in electronic structure between activated GBs and the basal plane, homo-compositional junctions were realized that improve the photocatalytic synthesis of hydrogen by 47% and achieve performances beyond the capabilities of other catalytic sites.

3.
Small ; 20(22): e2311209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098342

RESUMO

Two-dimensional (2D) materials are promising successors for silicon transistor channels in ultimately scaled devices, necessitating significant research efforts to study their behavior at nanoscopic length scales. Unfortunately, current research has limited itself to direct patterning approaches, which limit the achievable resolution to the diffraction limit and introduce unwanted defects into the 2D material. The potential of multi-patterning to fabricate 2D materials features with unprecedented precision and low complexity at large scale is demonstrated here. By combining lithographic patterning of a mandrel and bottom-up self-expansion, this approach enables pattern resolution one order of magnitude below the lithographical resolution. In-depth characterization of the self-expansion double patterning (SEDP) process reveals the ability to manipulate the critical dimension with nanometer precision through a self-limiting and temperature-controlled oxidation process. These results indicate that the SEDP process can regain the quality and morphology of the 2D material, as shown by high-resolution microscopy and optical spectroscopy. This approach is shown to open up new avenues for research into high-performance, ultra-scaled 2D materials devices for future electronics.

4.
Nano Lett ; 24(1): 67-73, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38149785

RESUMO

Two-dimensional transition metal nitrides offer intriguing possibilities for achieving novel electronic and mechanical functionality owing to their distinctive and tunable bonding characteristics compared to other 2D materials. We demonstrate here the enabling effects of strong bonding on the morphology and functionality of 2D tungsten nitrides. The employed bottom-up synthesis experienced a unique substrate stabilization effect beyond van-der-Waals epitaxy that favored W5N6 over lower metal nitrides. Comprehensive structural and electronic characterization reveals that monolayer W5N6 can be synthesized at large scale and shows semimetallic behavior with an intriguing indirect band structure. Moreover, the material exhibits exceptional resilience against mechanical damage and chemical reactions. Leveraging these electronic properties and robustness, we demonstrate the application of W5N6 as atomic-scale dry etch stops that allow the integration of high-performance 2D materials contacts. These findings highlight the potential of 2D transition metal nitrides for realizing advanced electronic devices and functional interfaces.

5.
ACS Appl Mater Interfaces ; 16(1): 1705-1711, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38145463

RESUMO

Two-dimensional (2D) metal nitrides have garnered significant interest due to their potential applications in future electronics and quantum systems. However, the synthesis of such materials with sufficient uniformity and at relevant scales remains an unaddressed challenge. This study demonstrates the potential of confined growth to control and enhance the morphology of 2D metal nitrides. By restricting the reaction volume of vapor-liquid-solid reactions, an enhanced precursor concentration was achieved that reduces the nucleation density, resulting in larger grain sizes and suppression of multilayer growth. Detailed characterization reveals the importance of balancing the energetic and kinetic aspects of tungsten nitride formation toward this ability. The introduction of a promoter enabled the realization of large-scale, single-layer tungsten nitride with a uniform and high interfacial quality. Finally, our advance in morphology control was applied to the production of edge-enriched 2D tungsten nitrides with significantly enhanced hydrogen evolution ability, as indicated by an unprecedented Tafel slope of 55 mV/dec.

6.
Nanoscale Horiz ; 9(1): 156-161, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37947058

RESUMO

Two-dimensional (2D) material-based nanoelectromechanical (NEM) resonators are expected to be enabling components in hybrid qubits that couple mechanical and electromagnetic degrees of freedom. However, challenges in their sensitivity and coherence time have to be overcome to realize such mechanohybrid quantum systems. We here demonstrate the potential of strain engineering to realize 2D material-based resonators with unprecedented performance. A liquid-based tension process was shown to enhance the resonance frequency and quality factor of graphene resonators six-fold. Spectroscopic and microscopic characterization reveals a surface-energy enhanced wall interaction as the origin of this effect. The response of our tensioned resonators is not limited by external loss factors and exhibits near-ideal internal losses, yielding superior resonance frequencies and quality factors to all previously reported 2D material devices. Our approach represents a powerful method of enhancing 2D NEM resonators for future quantum systems.

7.
Nat Commun ; 12(1): 6291, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725367

RESUMO

We here report on the direct observation of ferroelectric properties of water ice in its 2D phase. Upon nanoelectromechanical confinement between two graphene layers, water forms a 2D ice phase at room temperature that exhibits a strong and permanent dipole which depends on the previously applied field, representing clear evidence for ferroelectric ordering. Characterization of this permanent polarization with respect to varying water partial pressure and temperature reveals the importance of forming a monolayer of 2D ice for ferroelectric ordering which agrees with ab-initio and molecular dynamics simulations conducted. The observed robust ferroelectric properties of 2D ice enable novel nanoelectromechanical devices that exhibit memristive properties. A unique bipolar mechanical switching behavior is observed where previous charging history controls the transition voltage between low-resistance and high-resistance state. This advance enables the realization of rugged, non-volatile, mechanical memory exhibiting switching ratios of 106, 4 bit storage capabilities and no degradation after 10,000 switching cycles.

8.
Nano Lett ; 21(16): 6990-6997, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387505

RESUMO

We here demonstrate the multifunctional properties of atomically thin heterojunctions that are enabled by their strong interfacial interactions and their application toward self-powered sensors with unprecedented performance. Bonding between tin diselenide and graphene produces thermoelectric and mechanoelectric properties beyond the ability of either component. A record-breaking ZT of 2.43 originated from the synergistic combination of graphene's high carrier conductivity and SnSe2-mediated thermal conductivity lowering. Moreover, spatially varying interaction at the SnSe2/graphene interface produces stress localization that results in a novel 2D-crack-assisted strain sensing mechanism whose sensitivity (GF = 450) is superior to all other 2D materials. Finally, a graphene-assisted growth process permits the formation of high-quality heterojunctions directly on polymeric substrates for flexible and transparent sensors that achieve self-powered strain sensing from a small temperature gradient. Our work enhances the fundamental understanding of multifunctionality at the atomic scale and provides a route toward structural health monitoring through ubiquitous and smart devices.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Polímeros , Temperatura
9.
ACS Appl Mater Interfaces ; 11(4): 4649-4653, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30628434

RESUMO

Light-based information processing has the potential to increase speed, security, and scalability of electronic devices if issues in the device complexity could be resolved. We here demonstrate an integrated nanoelectronic device that can combine, store, and manipulate optical and electronic information. Employing a mechanically flexible and multilayered structure, a device is realized that shows memristive behavior. Illumination is shown to control the device operation in several unique ways. First, the device produces photocurrent that allows us to read out the device state in a self-powered manner. More importantly, a varying light intensity modulates the switching transition in a proportional manner that is akin to a neuron with variable plasticity and which can be taught and queried using either light or electrical inputs. This behavior enables a multilevel light-controlled logic and teaching schemes that can be applied to light-based communication devices and provides a route toward ubiquitous and low-cost sensors for future internet of things applications.

10.
ACS Appl Mater Interfaces ; 11(6): 6384-6388, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652856

RESUMO

Lateral heterojunctions in two-dimensional (2D) materials have demonstrated potential for high-performance sensors because of the unique electrostatic conditions at the interface. The increased complexity of producing such structures, however, has prevented their widespread use. We here demonstrate the simple and scalable fabrication of heterojunctions by a one-step synthesis process that yields photodetectors with superior device performance. Catalytic conversion of a solid precursor at optimized conditions was found to produce lateral nanostructured junctions between graphene domains and 3 nm thin amorphous carbon films. Carrier transport in these heterojunctions was found to proceed by minimizing the path through the amorphous carbon barriers, which results in a self-selective Schottky emission process with high uniformity and low emission barriers. We demonstrate the potential of thus produced heterojunctions by realizing a photodetector that combines an ultrahigh detectivity of 1013 Jones with microsecond response time, which represents the highest performance of 2D material heterojunction devices. These attractive features are retained even for millimeter-scale devices, and the demonstrated ability to produce transparent, patterned, and flexible sensors extends lateral heterojunction sensors toward wearable and large-scale electronics.

11.
RSC Adv ; 9(50): 29105-29108, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35528442

RESUMO

Barrier-guided CVD growth could provide a new route to printed electronics by combining high quality 2D materials synthesis with scalable and cost-effective deposition methods. Unfortunately, we observe the limited stability of the barrier at growth conditions which results in its removal within minutes due to hydrogen etching. This work describes a route towards enhancing the stability of an ink-jet deposited barrier for high resolution patterning of high quality graphene. By modifying the etching kinetics under confinement, the barrier film could be stabilized and high resolution barriers could be retained even after 6 hours of graphene growth. Thus produced microscopic graphene devices exhibited an increase in conductivity by 6 orders of magnitude and a decrease in defectiveness by 48 times yielding performances that are superior to devices produced by traditional lithographical patterning which indicates the potential of our approach for future electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...