Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 245: 114246, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39299040

RESUMO

The use of dressings in clinical settings is common for the purpose of wound wrapping and creating an optimal microenvironment to enhance the healing process. Proper coverage of wounds with dressings serves as the fundamental basis for effective wound healing. Unfortunately, non-standard coverage by hands can cause pain and secondary damage to patients, while slow manual application during treatment of extensive burns may increase the risk of wound infection. Herein, drawing inspiration from the microstructure and hygroscopic deformation observed in pine cones, we propose a polyvinyl alcohol/polysulfone (PVA/PSF) smart dressing. This bioinspired smart dressing exhibits rapid bending deformation under high moisture condition, allowing easy adjustment of bending amplitude, speed, and direction. Moreover, the smart dressing is capable of rapid bending and autonomous wrapping around "artificial wounds" on a doll's body, as well as fitting irregularly shaped "hand wounds" and extensive "arm wounds" on human subjects. By integrating two layers into one dressing design, we endow it with dual functionality: The hygroscopic PVA layer facilitates transversal liquid transport to effectively reduce exudate accumulation in the wound bed while maintaining proper moisture levels; meanwhile, the highly hydrophobic PSF layer repels various aqueous solutions to protect against external contaminants. In vivo results confirm that this multifunctional smart dressing promotes collagen synthesis and accelerates angiogenesis for accelerated wound healing. We believe that this innovative multifunctional approach to wound management will provide valuable insights into wound healing therapy.

2.
ACS Appl Mater Interfaces ; 16(1): 95-110, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157482

RESUMO

Nanozymes, emerging nanomaterials for wound healing, exhibit enzyme-like activity to modulate the levels of reactive oxygen species (ROS) at wound sites. Yet, the solo regulation of endogenous ROS by nanozymes often falls short, particularly in chronic refractory wounds with complex and variable pathological microenvironments. In this study, we report the development of a multifunctional wound dressing integrating a conventional alginate (Alg) hydrogel with a newly developed biodegradable copper hydrogen phosphate (CuP) nanozyme, which possesses good near-infrared (NIR) photothermal conversion capabilities, sustained Cu ion release ability, and pH-responsive peroxidase/catalase-mimetic catalytic activity. When examining acute infected wounds characterized by a low pH environment, the engineered Alg/CuP composite hydrogels demonstrated high bacterial eradication efficacy against both planktonic bacteria and biofilms, attributed to the combined action of catalytically generated hydroxyl radicals and the sustained release of Cu ions. In contrast, when applied to chronic diabetic wounds, which typically have a high pH environment, these composite hydrogels exhibit significant angiogenic performance. This is driven by the provision of catalytically generated dissolved oxygen and a beneficial supplement of Cu ions released from the degradable CuP nanozyme. Further, a mild thermal effect induced by NIR irradiation amplifies the catalytic activities and bioactivity of Cu ions, thereby enhancing the healing process of both infected and diabetic wounds. Our study validates that the synergistic integration of photothermal effects, catalytic activity, and released Cu ions can concurrently yield high antibacterial efficiency and tissue regenerative activity, rendering it highly promising for various clinical applications in wound healing.


Assuntos
Cobre , Diabetes Mellitus , Espécies Reativas de Oxigênio , Bandagens , Alginatos , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Íons , Concentração de Íons de Hidrogênio
3.
Adv Healthc Mater ; 12(21): e2203365, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162169

RESUMO

In the pursuit of therapeutic strategies for myocardial infarction (MI), a pivotal objective lies in the concurrent restoration of blood perfusion and reduction of cardiomyocyte apoptosis. However, achieving these dual goals simultaneously presents a considerable challenge. In this study, a Zn2 SiO4 bioceramic capable of concurrently sustaining the release of bioactive SiO3 2- and Zn2+ ions, which exhibit a synergistic impact on endothelial cell angiogenesis promotion, cardiomyocyte apoptosis inhibition, and myocardial mitochondrial protection against oxygen-free radical (reactive oxygen species) induced injury is developed. Furthermore, in vivo outcomes from a murine MI model demonstrate that either systemic administration via tail vein injection of Zn2 SiO4 extract or local application through intramyocardial injection of a Zn2 SiO4 composite hydrogel promotes cardiac function and reduces cardiac fibrosis, thus aiding myocardial repair. This research is the first to elucidate the advantageous effects of dual bioactive ions in myocardial protection and may offer a novel therapeutic avenue for ischemic heart disease based on meticulously engineered bioceramics.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Camundongos , Animais , Infarto do Miocárdio/tratamento farmacológico , Miocárdio , Miócitos Cardíacos , Zinco/farmacologia , Apoptose , Modelos Animais de Doenças
4.
Front Bioeng Biotechnol ; 11: 1158007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937744

RESUMO

In clinical practice, the utilization of antibiotics is still the main approach for the treatment of wound contamination, which lacks the ability to accelerate wound healing and arises the global concern of antimicrobial resistance. Plenty of alternative methods have been explored in recent years due to the fast development of material science. Here, CuO/SiO2 nanowires (CuSi NWs) with good near-infrared (NIR) photothermal conversion ability are synthesized by a one-step hydrothermal method. The as-prepared CuSi NWs possess excellent antibacterial ability against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which could be enhanced by the assistance of mild photothermal therapy (PTT). Moreover, CuSi NWs at suitable concentrations can promote proliferation, migration, and angiogenic gene expression of human umbilical vein endothelial cells (HUVECs), exhibiting a remarkable pro-vascularization ability. The in vivo mouse infect model further proves that the CuSi NWs might be a good candidate for the treatment of infected wounds as the high antibacterial efficiency and accelerated wound healing is obtained.

5.
Rev Sci Instrum ; 84(7): 076104, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23902121

RESUMO

We present a simple method to fabricate microscopic four-point probe (M4PP) with spacing of 70-100 µm for conductivity measurements in ultrahigh vacuum. The probe includes four gold wires with 30 µm diameter and a 0.5 mm thickness sapphire slice as cantilever. One of the dual scanning tunneling microscope (DSTM) is replaced by M4PP. As a result, in situ transport measurement could be performed by M4PP and investigation of surface morphology by STM. Finally, we measure conductivity of 14 monolayer Bi(111) epitaxial film on n type Si which is 1.6 × 10(-3) Ω(-1)∕[larger open square].

6.
Science ; 321(5897): 1815-7, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18818353

RESUMO

The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

8.
Phys Rev Lett ; 89(25): 256101, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12484902

RESUMO

Pb islands grown on a Si substrate transform at room temperature from a flattop facet geometry into an unusual ring shape. The volume-preserving mass transport is catalyzed by the electrical field from the tip of a scanning tunneling microscope. The ring morphology results from the competing classical and quantum effects in the shape relaxation. The latter is enhanced by the large anisotropy of the effective mass, and leads to a sequential strip-flow growth on alternating strips of the same facet defined by substrate steps, showing its dynamical impact on the stability of a nanostructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA