Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 110(4): 596-615, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30192418

RESUMO

ExoS/ChvI two-component signaling in the nitrogen-fixing α-proteobacterium Sinorhizobium meliloti is required for symbiosis and regulates exopolysaccharide production, motility, cell envelope integrity and nutrient utilization in free-living bacteria. However, identification of many ExoS/ChvI direct transcriptional target genes has remained elusive. Here, we performed chromatin immunoprecipitation followed by microarray analysis (chIP-chip) to globally identify DNA regions bound by ChvI protein in S. meliloti. We then performed qRT-PCR with chvI mutant strains to test ChvI-dependent expression of genes downstream of the ChvI-bound DNA regions. We identified 64 direct target genes of ChvI, including exoY, rem and chvI itself. We also identified ChvI direct target candidates, like exoR, that are likely controlled by additional regulators. Analysis of upstream sequences from the 64 ChvI direct target genes identified a 15 bp-long consensus sequence. Using electrophoretic mobility shift assays and transcriptional fusions with exoY, SMb21440, SMc00084, SMc01580, chvI, and ropB1, we demonstrated this consensus sequence is important for ChvI binding to DNA and transcription of ChvI direct target genes. Thus, we have comprehensively identified ChvI regulon genes and a 'ChvI box' bound by ChvI. Many ChvI direct target genes may influence the cell envelope, consistent with the critical role of ExoS/ChvI in growth and microbe-host interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Genoma Bacteriano/genética , Glucosiltransferases/genética , Ligação Proteica/genética , Transdução de Sinais , Simbiose/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
2.
J Bacteriol ; 200(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29632097

RESUMO

Sinorhizobium meliloti enters into beneficial symbiotic interactions with Medicago species of legumes. Bacterial exopolysaccharides play critical signaling roles in infection thread initiation and growth during the early stages of root nodule formation. After endocytosis of S. meliloti by plant cells in the developing nodule, plant-derived nodule-specific cysteine-rich (NCR) peptides mediate terminal differentiation of the bacteria into nitrogen-fixing bacteroids. Previous transcriptional studies showed that the intensively studied cationic peptide NCR247 induces expression of the exo genes that encode the proteins required for succinoglycan biosynthesis. In addition, genetic studies have shown that some exo mutants exhibit increased sensitivity to the antimicrobial action of NCR247. Therefore, we investigated whether the symbiotically active S. meliloti exopolysaccharide succinoglycan can protect S. meliloti against the antimicrobial activity of NCR247. We discovered that high-molecular-weight forms of succinoglycan have the ability to protect S. meliloti from the antimicrobial action of the NCR247 peptide but low-molecular-weight forms of wild-type succinoglycan do not. The protective function of high-molecular-weight succinoglycan occurs via direct molecular interactions between anionic succinoglycan and the cationic NCR247 peptide, but this interaction is not chiral. Taken together, our observations suggest that S. meliloti exopolysaccharides not only may be critical during early stages of nodule invasion but also are upregulated at a late stage of symbiosis to protect bacteria against the bactericidal action of cationic NCR peptides. Our findings represent an important step forward in fully understanding the complete set of exopolysaccharide functions during legume symbiosis.IMPORTANCE Symbiotic interactions between rhizobia and legumes are economically important for global food production. The legume symbiosis also is a major part of the global nitrogen cycle and is an ideal model system to study host-microbe interactions. Signaling between legumes and rhizobia is essential to establish symbiosis, and understanding these signals is a major goal in the field. Exopolysaccharides are important in the symbiotic context because they are essential signaling molecules during early-stage symbiosis. In this study, we provide evidence suggesting that the Sinorhizobium meliloti exopolysaccharide succinoglycan also protects the bacteria against the antimicrobial action of essential late-stage symbiosis plant peptides.


Assuntos
Medicago truncatula/microbiologia , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Medicago truncatula/fisiologia , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Sinorhizobium meliloti/genética
3.
Mol Microbiol ; 84(5): 892-920, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22553970

RESUMO

Although diminutive in size, bacteria possess highly diverse and spatially confined cellular structures. Two related alphaproteobacteria, Sinorhizobium meliloti and Caulobacter crescentus, serve as models for investigating the genetic basis of morphological variations. S. meliloti, a symbiont of leguminous plants, synthesizes multiple flagella and no prosthecae, whereas C. crescentus, a freshwater bacterium, has a single polar flagellum and stalk. The podJ gene, originally identified in C. crescentus for its role in polar organelle development, is split into two adjacent open reading frames, podJ1 and podJ2, in S. meliloti. Deletion of podJ1 interferes with flagellar motility, exopolysaccharide production, cell envelope integrity, cell division and normal morphology, but not symbiosis. As in C. crescentus, the S. meliloti PodJ1 protein appears to act as a polarity beacon and localizes to the newer cell pole. Microarray analysis indicates that podJ1 affects the expression of at least 129 genes, the majority of which correspond to observed mutant phenotypes. Together, phenotypic characterization, microarray analysis and suppressor identification suggest that PodJ1 controls a core set of conserved elements, including flagellar and pili genes, the signalling proteins PleC and DivK, and the transcriptional activator TacA, while alternative downstream targets have evolved to suit the distinct lifestyles of individual species.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , Proteínas de Membrana/metabolismo , Sinorhizobium meliloti/metabolismo , Divisão Celular , Flagelos/fisiologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Locomoção , Análise em Microsséries , Polissacarídeos Bacterianos/metabolismo
4.
J Bacteriol ; 191(22): 6833-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749054

RESUMO

The Sinorhizobium meliloti ExoS/ChvI two-component signaling pathway is required for the development of a nitrogen-fixing symbiosis between S. meliloti and its plant hosts. ExoS/ChvI also has important roles in regulating succinoglycan production, biofilm formation, motility, nutrient utilization, and the viability of free-living bacteria. Previous microarray experiments with an exoS96::Tn5 mutant indicated that ExoS/ChvI influences the expression of a few hundred genes, complicating the investigation of which downstream genes respond directly or indirectly to ExoS/ChvI regulation. To focus our study of ExoS/ChvI transcriptional target genes, we performed transcriptional profiling with chvI gain-of-function and reduced-function strains. The chvI gain-of-function strain that we used contains a dominant gain-of-function chvI allele in addition to wild-type chvI. We identified genes that, relative to their expression level in the wild type, are both upregulated in the chvI gain-of-function strain and downregulated in the reduced-function strain or vice versa. Guided by this focused set of genes, we performed gel mobility shift assays and demonstrated that ChvI directly binds the intergenic regions upstream of ropB1, SMb21440, and SMc01580. Furthermore, DNase I footprint analysis of the region upstream of SMc01580 identified a specific DNA sequence bound by ChvI and allowed the discovery of a possible motif for ChvI binding. Our results provide insight into the mechanism of how ExoS/ChvI regulates its downstream targets and lay a foundation for studying this conserved pathway with critical roles in free-living and symbiotic bacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/metabolismo , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Mol Microbiol ; 69(5): 1290-303, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18631237

RESUMO

Sinorhizobium meliloti requires ExoS/ChvI two-component signalling to establish a nitrogen-fixing symbiosis with legume hosts. The importance of ExoS/ChvI signalling in microbe-host interactions is underscored by the requirement of ExoS/ChvI orthologues for virulence of the related alpha-proteobacteria Agrobacterium tumefaciens and Brucella abortus. In S. meliloti, ExoS/ChvI is a key regulator of gene expression for exopolysaccharide synthesis, biofilm formation, motility, nutrient utilization and free-living viability. Previously, we showed that the novel conserved regulator ExoR interacts genetically with both ExoS and ChvI, and localizes to the periplasm of S. meliloti. Here, we show that ExoR physically associates with ExoS and that this association is important for regulating ExoS/ChvI signalling. We have identified point mutations in the Sel1-like repeat region of ExoR that disrupt binding to ExoS and cause a dramatic increase in ExoS/ChvI-dependent gene expression. Furthermore, we have found that physical interaction with ExoS stabilizes the ExoR protein. Together, our results indicate that ExoR binds to ExoS in the periplasm of S. meliloti to inhibit ExoS/ChvI activity, and that ExoR represents a novel periplasmic inhibitor of two-component signalling.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Periplasma/metabolismo , Polissacarídeos Bacterianos/metabolismo , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Proteínas de Bactérias/genética , Mutação , Periplasma/genética , Polissacarídeos Bacterianos/genética , Ligação Proteica , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose
6.
Mol Microbiol ; 64(3): 647-64, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17462014

RESUMO

Sinorhizobium meliloti enters into a symbiotic relationship with legume host plants, providing fixed nitrogen in exchange for carbon and amino acids. In S. meliloti, exoR and the exoS-chvI two-component system regulate the biosynthesis of succinoglycan, an exopolysaccharide important for host invasion. It was previously reported that a loss-of-function mutation in exoR and a gain-of-function mutation in exoS cause overproduction of succinoglycan and loss of motility, indicating that ExoR negatively regulates and ExoS-ChvI positively regulates downstream genes. However, a relationship between exoR and exoS-chvI has never been clearly established. By identification and detailed characterization of suppressor strains, we provide genetic evidence that exoR and exoS-chvI control many similar phenotypes. These include succinoglycan production, symbiosis, motility, and previously uncharacterized prototrophy and biofilm formation, all of which are co-ordinately restored by suppressors. We further demonstrate that ExoR is located in the periplasm, suggesting that it functions to regulate downstream genes in a novel manner. In pathogenic bacteria closely related to S. meliloti, exoS-chvI homologues are required for virulence and the regulation of cell envelope composition. Our data suggest that periplasmically localized ExoR and ExoS-ChvI function together in a unique and critical regulatory system associated with both free-living and symbiotic states of S. meliloti.


Assuntos
Proteínas de Bactérias/metabolismo , Periplasma/metabolismo , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/metabolismo , Acetileno/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Cinamatos/farmacologia , Farmacorresistência Bacteriana , Flagelos/metabolismo , Flagelos/ultraestrutura , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Fixação de Nitrogênio , Periplasma/efeitos dos fármacos , Periplasma/ultraestrutura , Fosforilação/efeitos dos fármacos , Polissacarídeos Bacterianos/biossíntese , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/ultraestrutura , Fatores de Transcrição/genética
7.
Mol Biol Cell ; 17(10): 4411-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16885415

RESUMO

The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1p(K9R,K16R), is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1p(K9R,K16R) can be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1p(K9R,K16R)-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/farmacocinética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Aminoácidos/toxicidade , Membrana Celular/enzimologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
J Cell Biol ; 161(2): 333-47, 2003 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-12719473

RESUMO

LST8, a Saccharomyces cerevisiae gene encoding a 34-kD WD-repeat protein, was identified by mutations that caused defects in sorting Gap1p to the plasma membrane. Here, we report that the Gap1p sorting defect in the lst8-1 mutant results from derepression of Rtg1/3p activity and the subsequent accumulation of high levels of intracellular amino acids, which signal Gap1p sorting to the vacuole. To identify the essential function of Lst8p, we isolated lst8 mutants that are temperature-sensitive for growth. These mutants show hypersensitivity to rapamycin and derepressed Gln3p activity like cells with compromised TOR pathway activity. Like tor2 mutants, lst8 mutants also have cell wall integrity defects. Confirming a role for Lst8p in the TOR pathway, we find that Lst8p associates with both Tor1p and Tor2p and is a peripheral membrane protein that localizes to endosomal or Golgi membranes and cofractionates with Tor1p. Further, we show that a sublethal concentration of rapamycin mimics the Gap1p sorting defect of an lst8 mutant. Finally, the different effects of lst8 alleles on the activation of either the Rtg1/3p or Gln3p transcription factors reveal that these two pathways constitute distinct, genetically separable outputs of the Tor-Lst8 regulatory complex.


Assuntos
Sistemas de Transporte de Aminoácidos , Aminoácidos/biossíntese , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Divisão Celular/genética , Membrana Celular/genética , Células Cultivadas , Retroalimentação Fisiológica/genética , Regulação Fúngica da Expressão Gênica/genética , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vacúolos/genética , Vacúolos/metabolismo , Proteínas Ativadoras de ras GTPase/genética
9.
Proc Natl Acad Sci U S A ; 99(23): 14837-42, 2002 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-12417748

RESUMO

The delivery to the plasma membrane of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae is regulated by the quality of the nitrogen source in the growth medium. In an effort to define how different nitrogen sources control Gap1p sorting, we find that mutations in GDH1 and GLN1 that decrease the flux through the glutamate and glutamine synthesis pathways result in increased Gap1p sorting to the plasma membrane. Conversely, deletion of MKS1, which increases glutamate and glutamine synthesis, decreases Gap1p sorting to the plasma membrane. Glutamate and glutamine are not unusual in their ability to regulate Gap1p sorting, because the addition of all natural amino acids and many amino acid analogs to the growth medium results in increased Gap1p sorting to the vacuole. Importantly, amino acids have the capacity to signal Gap1p sorting to the vacuole regardless of whether they can be used as a source of nitrogen. Finally, we show that rapamycin does not affect Gap1p sorting, indicating that Gap1p sorting is not directly influenced by the TOR pathway. Together, these data show that amino acids are a signal for sorting Gap1p to the vacuole and imply that the nitrogen-regulated Gap1p sorting machinery responds to amino acid-like compounds rather than to the overall nutritional status associated with growth on a particular nitrogen source.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Saccharomyces cerevisiae/enzimologia , Transporte Biológico , Membrana Celular/enzimologia , Meios de Cultura , Deleção de Genes , Genótipo , Ácido Glutâmico/biossíntese , Glutamina/biossíntese , Cinética , Plasmídeos , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...