Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123966, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335591

RESUMO

Potatoes are popular among consumers due to their high yield and delicious taste. However, due to the numerous varieties of potatoes, different varieties are suitable for different processing methods. Therefore, it is necessary to distinguish varieties after harvest to meet the needs of processing enterprises and consumers. In this study, a new visible-near-infrared spectroscopic analysis method was proposed, which can achieve detection of five potato varieties. The method measures the transmission and reflection spectra of potatoes using a spectral acquisition system, encodes one-dimensional spectra into two-dimensional images using Gramian Angular Summation Field (GASF), Gramian Angular Difference Field (GADF), Markov Transition Field (MTF) and Recurrence Plot (RP), and improves the coordinated attention mechanism module and embeds the improved module into the ConvNeXt V2 model to build the ConvNeXt V2-CAP model for potato variety classification. The results show that compared with directly using one-dimensional classification models, image encoding of spectral data for classification greatly improves the accuracy. Among them, the best accuracy of 99.54% is achieved by using GADF image encoding of transmission spectra combined with the ConvNeXt V2-CAP model for classification, which is 16.28% higher than the highest accuracy of the one-dimensional classification model. The CAP attention mechanism module improves the performance of the model, especially when the dataset is small. When the training set is reduced to 150 images, the accuracy of the model is improved by 2.33% compared to the original model. Therefore, it is feasible to classify potato varieties using visible-near infrared spectroscopy and image encoding technology.

2.
J Sci Food Agric ; 104(7): 4309-4319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305465

RESUMO

BACKGROUND: Due to the scalability of deep learning technology, researchers have applied it to the non-destructive testing of peach internal quality. In addition, the soluble solids content (SSC) is an important internal quality indicator that determines the quality of peaches. Peaches with high SSC have a sweeter taste and better texture, making them popular in the market. Therefore, SSC is an important indicator for measuring peach internal quality and making harvesting decisions. RESULTS: This article presents the High Order Spatial Interaction Network (HOSINet), which combines the Position Attention Module (PAM) and Channel Attention Module (CAM). Additionally, a feature wavelength selection algorithm similar to the Group-based Clustering Subspace Representation (GCSR-C) is used to establish the Position and Channel Attention Module-High Order Spatial Interaction (PC-HOSI) model for peach SSC prediction. The accuracy of this model is compared with traditional machine learning and traditional deep learning models. Finally, the permutation algorithm is combined with deep learning models to visually evaluate the importance of feature wavelengths. Increasing the order of the PC-HOSI model enhances its ability to learn spatial correlations in the dataset, thus improving its predictive performance. CONCLUSION: The optimal model, PC-HOSI model, performed well with an order of 3 (PC-HOSI-3), with a root mean square error of 0.421 °Brix and a coefficient of determination of 0.864. Compared with traditional machine learning and deep learning algorithms, the coefficient of determination for the prediction set was improved by 0.07 and 0.39, respectively. The permutation algorithm also provided interpretability analysis for the predictions of the deep learning model, offering insights into the importance of spectral bands. These results contribute to the accurate prediction of SSC in peaches and support research on interpretability of neural network models for prediction. © 2024 Society of Chemical Industry.


Assuntos
Prunus persica , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Algoritmos , Redes Neurais de Computação
3.
Foods ; 13(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254552

RESUMO

Cherry tomatoes are cultivated worldwide and favored by consumers of different ages. The soluble solid content (SSC) and pH are two of the most important quality attributes of cherry tomatoes. The rapid and non-destructive measurement of the SSC and pH of cherry tomatoes is of great significance to their production and consumption. In this research, hyperspectral imaging combined with a convolutional neural network with Transformer (CNN-Transformer) was utilized to analyze the SSC and pH of cherry tomatoes. Conventional machine learning and deep learning models were established for the determination of the SSC and pH. The findings demonstrated that CNN-Transformer yielded outstanding results in predicting the SSC, with the coefficient of determination of calibration (R2C), validation (R2V), and prediction (R2P) for the SSC being 0.83, 0.87, and 0.83, respectively. Relatively worse results were obtained for the pH value prediction, with R2C, R2V, and R2P values of 0.74, 0.68, and 0.60, respectively. Furthermore, the visualization of the CNN-Transformer model revealed the wavelength weight distributions, indicating that the 1380-1650 nm range served as the characteristic band for the SSC, while the spectral range at 945-1280 nm was the characteristic band for pH. In conclusion, integrating spectral information features with the attention mechanism of Transformer through a convolutional neural network can enhance the accuracy of predicting the SSC and pH for cherry tomatoes.

4.
Front Plant Sci ; 14: 1199473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841621

RESUMO

Introduction: The identification and localization of tea picking points is a prerequisite for achieving automatic picking of famous tea. However, due to the similarity in color between tea buds and young leaves and old leaves, it is difficult for the human eye to accurately identify them. Methods: To address the problem of segmentation, detection, and localization of tea picking points in the complex environment of mechanical picking of famous tea, this paper proposes a new model called the MDY7-3PTB model, which combines the high-precision segmentation capability of DeepLabv3+ and the rapid detection capability of YOLOv7. This model achieves the process of segmentation first, followed by detection and finally localization of tea buds, resulting in accurate identification of the tea bud picking point. This model replaced the DeepLabv3+ feature extraction network with the more lightweight MobileNetV2 network to improve the model computation speed. In addition, multiple attention mechanisms (CBAM) were fused into the feature extraction and ASPP modules to further optimize model performance. Moreover, to address the problem of class imbalance in the dataset, the Focal Loss function was used to correct data imbalance and improve segmentation, detection, and positioning accuracy. Results and discussion: The MDY7-3PTB model achieved a mean intersection over union (mIoU) of 86.61%, a mean pixel accuracy (mPA) of 93.01%, and a mean recall (mRecall) of 91.78% on the tea bud segmentation dataset, which performed better than usual segmentation models such as PSPNet, Unet, and DeeplabV3+. In terms of tea bud picking point recognition and positioning, the model achieved a mean average precision (mAP) of 93.52%, a weighted average of precision and recall (F1 score) of 93.17%, a precision of 97.27%, and a recall of 89.41%. This model showed significant improvements in all aspects compared to existing mainstream YOLO series detection models, with strong versatility and robustness. This method eliminates the influence of the background and directly detects the tea bud picking points with almost no missed detections, providing accurate two-dimensional coordinates for the tea bud picking points, with a positioning precision of 96.41%. This provides a strong theoretical basis for future tea bud picking.

5.
Comput Biol Med ; 166: 107478, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37776730

RESUMO

Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) exhibits non-Euclidean topological structures, which have pathological foundations and serve as ideal objective data for intelligent diagnosis of major depressive disorder (MDD) patients. Additionally, the fully connected FC demonstrates uniform spatial structures. To learn and integrate information from these two structural forms for a more comprehensive identification of MDD patients, we propose a novel hierarchical learning structure called Multi-View Graph Neural Network (MV-GNN). In MV-GNN, the collaborative FC of subjects is filtered and reconstructed from topological view to obtain the reconstructed FC, incorporating various threshold values to calculate the topological attributes of brain regions. ROC analysis is performed on the average scores of these attributes for MDD and healthy control (HC) groups to determine an efficient threshold. Group differences analysis is conducted on the efficient topological attributes of brain regions, followed by their selection. These efficient attributes, along with the reconstructed FC, are combined to construct a graph view using self-attention graph pooling and graph convolutional neural networks, enabling efficient embedding. To extract efficient FC pattern difference information from spatial view, a dual leave-one-out cross-feature selection method is proposed. It selects and extracts relevant information from uniformly sized FC structures' high-dimensional spatial features, constructing a relationship view between brain regions. This approach incorporates both the whole graph topological view and spatial relationship view in a multi-layered structure, fusing them using gating mechanisms. By incorporating multiple views, it enhances the inference of whether subjects suffer from MDD and reveals differential information between MDD and HC groups across different perspectives. The proposed model structure is evaluated through leave-one-site cross-validation and achieves an average accuracy of 65.61% in identifying MDD patients at a single-center site, surpassing state-of-the-art methods in MDD recognition. The model provides valuable discriminatory information for objective diagnosis of MDD and serves as a reference for pathological foundations.

6.
Front Neurosci ; 17: 1126865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008226

RESUMO

Introduction: Resting-state brain network with physiological and pathological basis has always been the ideal data for intelligent diagnosis of major depression disease (MDD). Brain networks are divided into low-order networks and high-order networks. Most of the studies only use a single-level network to classify while ignoring that the brain works cooperatively with different levels of networks. This study hopes to find out whether varying levels of networks will provide complementary information in the process of intelligent diagnosis and what impact will be made on the final classification results by combining the characteristics of different networks. Methods: Our data are from the REST-meta-MDD project. After the screening, 1,160 subjects from ten sites were included in this study (597 MDD and 563 normal controls). For each subject, we constructed three different levels of networks according to the brain atlas: the traditional low-order network based on Pearson's correlation (low-order functional connectivity, LOFC), the high-order network based on topographical profile similarity (topographical information-based high-order functional connectivity, tHOFC) and the associated network between them (aHOFC). Two sample t-test is used for feature selection, and then features from different sources are fused. Finally, the classifier is trained by a multi-layer perceptron or support vector machine. The performance of the classifier was evaluated using the leave-one-site cross-validation method. Results: The classification ability of LOFC is the highest among the three networks. The classification accuracy of the three networks combined is similar to the LOFC network. These are seven features chosen in all networks. In the aHOFC classification, six features were selected in each round but not seen in other classifications. In the tHOFC classification, five features were selected in each round but were unique. These new features have crucial pathological significance and are essential supplements to LOFC. Conclusion: A high-order network can provide auxiliary information for low-order networks but cannot improve classification accuracy.

7.
Sensors (Basel) ; 19(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661932

RESUMO

A multi-channel light emitting diode (LED)-induced fluorescence system combined with a convolutional neural network (CNN) analytical method was proposed to classify the varieties of tea leaves. The fluorescence system was developed employing seven LEDs with spectra ranging from ultra-violet (UV) to blue as excitation light sources. The LEDs were lit up sequentially to induce a respective fluorescence spectrum, and their ability to excite fluorescence from components in tea leaves were investigated. All the spectral data were merged together to form a two-dimensional matrix and processed by a CNN model, which is famous for its strong ability in pattern recognition. Principal component analysis combined with k-nearest-neighbor classification was also employed as a baseline for comparison. Six grades of green tea, two types of black tea and one kind of white tea were verified. The result proved a significant improvement in accuracy and showed that the proposed system and methodology provides a fast, compact and robust approach for tea classification.

8.
Biomed Res Int ; 2017: 3845409, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28630864

RESUMO

The aim of the paper is to identify the breast malignant and benign lesions using the features of apparent diffusion coefficient (ADC), perfusion fraction f, pseudodiffusion coefficient D⁎, and true diffusion coefficient D from intravoxel incoherent motion (IVIM). There are 69 malignant cases (including 9 early malignant cases) and 35 benign breast cases who underwent diffusion-weighted MRI at 3.0 T with 8 b-values (0~1000 s/mm2). ADC and IVIM parameters were determined in lesions. The early malignant cases are used as advanced malignant and benign tumors, respectively, so as to assess the effectiveness on the result. A predictive model was constructed using Support Vector Machine Binary Classification (SVMBC, also known Support Vector Machine Discriminant Analysis (SVMDA)) and Partial Least Squares Discriminant Analysis (PLSDA) and compared the difference between them both. The D value and ADC provide accurate identification of malignant lesions with b = 300, if early malignant tumor was considered as advanced malignant (cancer). The classification accuracy is 93.5% for cross-validation using SVMBC with ADC and tissue diffusivity only. The sensitivity and specificity are 100% and 87.0%, respectively, r2cv = 0.8163, and root mean square error of cross-validation (RMSECV) is 0.043. ADC and IVIM provide quantitative measurement of tissue diffusivity for cellularity and are helpful with the method of SVMBC, getting comprehensive and complementary information for differentiation between benign and malignant breast lesions.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Papiloma Intraductal/diagnóstico por imagem , Feminino , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...