Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Toxicol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572808

RESUMO

BACKGROUND: Antiapoptosis is a major factor in the resistance of tumor cells to chemotherapy and radiotherapy. Thus, activation of cell pyroptosis may be an effective option to deal with antiapoptotic cancers such as esophageal adenocarcinoma (EAC). METHODS: Differential expression of ubiquitin-like versus PHD and ring finger structural domain 1 (UHRF1) in EAC and near normal tissues was analyzed, as well as the prognostic impact on survival in EAC. Also, the same study was done for globular adiponectin (gAD). Simultaneously, the mRNA expression of UHRF1 was observed in different EAC cell lines. Real time cellular analysis (RTCA) was used to detect cell proliferation, and flow cytometry and inverted fluorescence microscopy were used to detect pyroptosis. Biocredit analysis was conducted to observe the correlation between UHRF1 and key pyroptosis proteins. OD values and CCK8 assay were used to determine the effect of miR-378a-3p on EAC cells. Quantitative real-time polymerase chain reaction and Western blot were used to detect the correlation between UHRF1, gAD, and miR-378a-3p in EAC cells. Moreover, in vivo and in vitro experiments were performed to detect the relevant effects on tumor migration and invasion after inhibiting UHRF1 expression. RESULTS: UHRF1 was negatively correlated with the survival of patients with EAC, while miR-378a-3p showed the opposite effect. Additionally, gAD promoted EAC cell pyroptosis, upregulated miR-378a-3p, and significantly inhibited the proliferation of EAC cells. gAD directly reduced UHRF1 expression in EAC cells by upregulating miR-378a-3p. In cell migration and invasion assays, inhibition of UHRF1 expression significantly suppressed EAC cell metastasis. In animal experiments, we again demonstrated that gAD induced pyroptosis in EAC cells by inhibiting the expression of UHRF1. CONCLUSION: gAD-induced upregulation of miR-378a-3p significantly inhibited the proliferation of EAC by targeting UHRF1. Therefore, gAD may serve as an alternative therapy for chemotherapy- and radiation-refractory EAC or other cancers with the same mechanism of pyroptosis action.

2.
Phys Chem Chem Phys ; 26(15): 11922-11932, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572672

RESUMO

In recent times, self-assembled electron transport materials for optoelectronic devices, both solar cells and organic light-emitting diodes (OLEDs), have been gaining much interest as they help in fabricating high-efficiency devices. However, designing organic small molecular materials with star-shaped self-assembled networks is a challenge. To achieve this sort of target, we chose triazine and benzene-1,3,5-tricarbonyl cores for developing such architecture, and we developed four molecular systems, vizTCpCN, TCmCN, TmCN, and TpCN. Successful isolation of single crystals followed by structural analysis of TmCN revealed interesting molecular arrangements in the solid state resulting in the formation of a waterwheel type architecture with an extended network bearing characteristic voids. Theoretical calculations was carried out to check their electron transportability. The natural transition orbital calculation helped in understanding the locally excited and charge transfer excited states. The low electron reorganization energies of these molecules indicated that these materials may have potential to be used in electron transport layers of optoelectronic devices, particularly in OLEDs. Moreover, the assembled networks have a relatively wide surface area and linked structures, which are advantageous for the conduction of carriers with poor electron recombination inside the ETL, and these may offer a straightforward channel for electron conduction to the emissive layer. Finally, the fabricated electron-only device indicated that the synthesized materials may be used as ETMs in the electron transport layer of optoelectronic devices.

3.
Chemistry ; 30(23): e202304333, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38373190

RESUMO

This study presents a comparative analysis of S-annulated perylene tetraester (PTE-S) and its sulfone (PTE-SO2) analogue. This sulfone modification reduced melting point and stabilized a room temperature columnar rectangular (Colr) phase in contrast to its parent PTE-S which showed a crystalline behaviour at room temperature. This molecular design also leads to red-shifted absorbance and emission in comparison to PTE-S, along with a tuning of photoluminescence from sky blue to green, achieving an impressive quantum yield of 85 %. OLED devices fabricated using PTE-SO2 as emitter material at concentrations of 0.2, 0.5, and 1 wt.% in CBP as host material. A maximum external quantum efficiency (EQE) of 2.9 % was observed with the 0.5 wt.% PTE-SO2 in CBP with CIE coordinates of (0.45, 0.35), accompanied by an orange luminance of 848 cd/m2. Notably, a device with a 0.5 wt% doping concentration of PTE-S demonstrates an EQE of 3.5 %, and cyan luminance of 2,598 cd/m2.

4.
J Mol Histol ; 55(1): 83-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165571

RESUMO

Acquired drug resistance is a main reason for limiting the application of sorafenib in HCC treatment. This study aimed to explore the role and mechanisms of a novel long non-coding RNA (lncRNA), lnc-TSI, in sorafenib resistance of HCC. The interaction between lnc-TSI and miR-4726-5p, and miR-4726-5p and KCNMA1 were predicted using bioinformatic tools. Expression of the molecules in the lnc-TSI/miR-4726-5p/KCNMA1 axis in clinical samples and cell lines, as well as the sorafenib resistant HCC cell lines, was determined using qRT-PCR or western blotting. Expressions of lnc-TSI, miR-4726-5p, and KCNMA1 were manipulated in HepG2 and Huh7 cells through plasmid transfection or lentivirus infection. The CCK-8, flow cytometry, and Tunel assays were employed to determine the role of this axis on sorafenib resistance of HCC. A xenograft model was established using sorafenib-resistant HepG2 and Huh7 cells followed by in vivo sorafenib treatments to confirm the in vitro findings. Lnc-TSI and KCNMA1 expressions were significantly downregulated in HCC clinical samples and cell lines, especially in sorafenib resistance ones, while mi-4726-5p presented a reversed expression pattern. Lnc-TSI interacted with miR-4726-5p, and Lnc-TSI acts as a ceRNA via sponging miR-4726-5p in HCC cells. Overexpression of lnc-TSI and KCNMA1 promoted apoptosis and decreased cell viability of sorafenib-treated HCC cells, thus alleviated sorafenib resistance. miR-4726-5p mimic reversed the KCNMA1-mediated sorafenib sensitivity-promoting effect, while additional overexpression of lnc-TSI reversed the effect of miR-4726-5p. In vivo analysis also showed that overexpression of ln-TSI diminished sorafenib resistance in mice inoculated with sorafenib-resistant HCC cells via increasing KCNMA1 expression and decreasing miR-4726-5p expression. The lnc-TSI/miR-4726-5p/KCNMA1 axis plays a critical role in regulating the resistance of HCC to sorafenib, and might serve as a therapeutic target to manage sorafenib resistance of HCC in clinic.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo
5.
Phys Chem Chem Phys ; 25(29): 19648-19659, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435981

RESUMO

The advancement in developing highly efficient hole transport materials for OLED devices has been a challenge over the past several years. For an efficient OLED device, there should be an efficient promotion of charge carriers from each electrode and effective confinement of triplet excitons in the emissive layer of the phosphorescent OLED (PhOLED). Thus, the development of stable and high triplet energy hole transport materials is in urgent demand for high-performing PhOLED devices. The present work demonstrates the development of two hetero-arylated pyridines as high triplet energy (2.74-2.92 eV) multifunctional hole transport materials to reduce the exciton quenching and to enhance the extent of charge carrier recombination in the emissive layer. In this regard, we report the design, synthesis, and theoretical modeling with electro-optical properties of two molecules, namely PrPzPy and MePzCzPy, with suitable HOMO/LUMO energy levels and high triplet energy, by incorporating phenothiazine as well as other donating units into a pyridine scaffold, and finally developing a hybrid phenothiazine-carbazole-pyridine based molecular architecture. The natural transition orbital (NTO) calculations were done to analyze the excited state sensation in these molecules. The long-range charge transfer characteristics between the higher singlet and triplet states were also analyzed. The reorganization energy of each molecule was calculated to examine their hole transportability. The theoretical calculations for PrPzPy and MePzCzPy revealed that these two molecular systems could be promising materials for the hole transport layer of OLED devices. As a proof of concept, a solution-processed hole-only device (HOD) of PrPzPy was fabricated. The increase in current density with an increase in operating voltage in the range of ∼3-10 V supported that the suitable HOMO energy of PrPzPy can facilitate the hole transportation from the hole injection layer (HIL) to the emissive layer (EML). These results indicated the promising hole transportability of the present molecular materials.

6.
Front Cell Neurosci ; 16: 961131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238831

RESUMO

Methamphetamine (METH) addiction and withdrawal cause serious harm to both the immune system and nervous system. However, the pathogenesis remains largely unknown. Herein, we investigated the peripheral cytokines and exosomal transcriptome regulatory networks in the patients with METH use disorders (MUDs) undergoing withdrawal. Twenty-seven cytokines were simultaneously assessed in 51 subjects, including 22 at the acute withdrawal (AW) stage and 29 at the protracted withdrawal (PW) stage, and 31 age and gender-matched healthy controls (HCs). Compared to the HCs, significantly decreased levels of interleukin (IL)-1ß, IL-9, IL-15, Basic FGF, and MIP1a, increased levels of IL-1rα, IL-6, Eotaxin IP-10, VEGF, and RANTES were identified in AW. These disturbances were mostly or partly restored to the baseline in PW. However, the cytokines IL-6, IL-7, and IL-12p70 were consistently increased even after one year of withdrawal. Besides, a significant decrease in CD3+T and CD4+T cell numbers was observed in AW, and the diminishment was restored to baseline in PW. Comparatively, there were no statistically significant changes in CD8+T, NK, and B cells. Furthermore, the exosomal mRNAs and long non-coding RNAs (lncRNA) were profiled, and the lncRNA-miRNA-mRNA networks were constructed and associated with METH AW and PW stages. Notably, the chemokine signaling was remarkably upregulated during AW. By contrast, the differentially expressed mRNAs/lincRNAs were significantly enriched in neurodegeneration-related diseases. Taken together, a group of METH withdrawal-related cytokines and exosomal mRNA/lncRNA regulatory networks were obtained, which provides a useful experimental and theoretical basis for further understanding of the pathogenesis of the withdrawal symptoms in MUDs.

7.
Biomed Pharmacother ; 155: 113685, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137407

RESUMO

Despite decades of research in the field of substance withdrawal, molecular biomarkers and related mechanistic study have generally been lacking. In addition to known neurotransmitters, circulating miRNAs are found in small vesicles known as exosomes within blood that have diagnostic potential and are known to contribute to psychiatric disorders. The aim of this work was to characterize the changes in neurotransmitter and exosomal miRNA profiles during heroin and methamphetamine withdrawal using a cross-sectional study design, and to determine their associations to psychiatric comorbidities in a large group of patients with substance use disorders (SUDs). Using weighted gene co-expression network analysis, a series of known, conserved, and novel exosomal miRNAs were identified as being associated with the severity of anxiety and depression, as well as the concentrations of neurotransmitters GABA, choline, and serotonin. Bioinformatics analyses established that the differences in the miRNA profile target signaling pathways are significantly associated with developmental and intellectual abnormalities. Notably, a set of dysregulated miRNA signatures including hsa-mia-451a and hsa-mir-21a resulted in an AUC of 0.966 and 0.861, respectively, for predicting the patients with SUDs. Furthermore, hsa-miR-744a-5p was positively correlated with serotonin, and its important role in maintaining neuronal development and function was revealed using an in vitro human induced pluripotent stem cells derived neuronal model. Our results suggest that the miRNA content of circulating exosomes represent a biomolecular "fingerprint" of the progression of substance withdrawal and may uncover the putative mechanism of how these exosomal miRNAs contribute to psychiatric symptoms.


Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , Metanfetamina , MicroRNAs , Humanos , MicroRNAs/metabolismo , Heroína , Serotonina/metabolismo , Estudos Transversais , Células-Tronco Pluripotentes Induzidas/metabolismo , Exossomos/genética , Exossomos/metabolismo , Biomarcadores/metabolismo , Neurotransmissores/metabolismo , Colina/metabolismo , Metanfetamina/efeitos adversos , Ácido gama-Aminobutírico/metabolismo
8.
Mol Cell Biochem ; 477(8): 2133-2147, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35608718

RESUMO

To explore the role of the miRNA-1297/phospholipase Cß1 (PLCß1) axis in intestinal barrier injury. Abnormally expressed miR-1297 and its target gene PLCß1 as well as their transcriptome sequencing were confirmed by bioinformatics analysis. Next, the intestinal barrier injury was induced by lipopolysaccharide (LPS) in the CCCHIE-2 cells. Subsequently, the impacts of miR-1297 and PLCß1 on the transcriptome were estimated. QRT-PCR and Western blotting were conducted to detect the relative mRNA and protein expressions, respectively. The cell viability and permeability were analyzed by MTT assay and fluorescent yellow detection. miR-1297 was significantly upregulated in patients with human immunodeficiency virus/acquired immunodeficiency syndrome and targeted PLCß1. Moreover, overexpressed PLCß1 was mainly enriched in the transforming growth factor-beta signaling pathway, while the knockdown of miR-1297 was focused on the arginine biosynthesis pathway. The overexpression of miR-1297 could reduce the PLCß1 expression and inhibit the viability of CCCHIE-2 cells injured by LPS, while the effect of the downregulation of miR-1297 was on the opposite. Western blotting and cell fluorescence localization experiments revealed that the inhibition of miR-1297 increased the expressions of PLCß1 and ZO-1. In addition, the upregulation of miR-1297 strengthened the permeability in cells injured by LPS, as did the knockdown of PLCß1. miR-1297 could restrain the repair of intestinal barrier injury via negatively regulating PLCß1 and its tight junction downstream protein ZO-1 in CCC-HIE-2 cells injured by LPS, which indicated that PLCß1 and miR-1297 might be important targets for the repair of intestinal barrier injury.


Assuntos
Síndrome da Imunodeficiência Adquirida , MicroRNAs , Regulação para Baixo , Humanos , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo
9.
Biomed Pharmacother ; 149: 112837, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35339829

RESUMO

BACKGROUND: Metformin exhibits therapeutic potential in behavioural deficits induced by methamphetamine (METH) in rats. Emerging studies suggest gut microbiota may impact psychiatric symptoms, but there is no direct evidence supporting metformin's participation in the pathophysiology of withdrawal symptoms via modulation of gut microbiota. METHODS: In order to define the functional impacts of gut microbiota and metformin to the behavioural deficits during METH withdrawal, we utilized a combination of fecal microbiota transplantation (FMT), high-throughput sequencing, and untargeted metabolomics technologies. RESULTS: First, METH addicts exhibited higher α diversity and distinct microbial structures compared to healthy controls. In particular, the relative abundance of Rikenellaceae was positively correlated with the severity of anxiety and depression. Second, both human-to-mouse and mouse-to-mouse FMTs confirmed that METH-altered-microbiota transplantation is sufficient to promote anxiety and depression-like behaviours in recipient germ-free mice, and these behavioural disturbances could be ameliorated by metformin. In-depth analysis revealed that METH significantly altered the bacterial composition and structure as well as relative abundance of several bacterial taxa and metabolites, including Rikenellaceae and inosine, respectively, whereas add-on metformin could remodel these alterations. Finally, the inosine complementation successfully restored METH-induced anxiety and depression-like behaviours in mice. CONCLUSION: This study demonstrates that METH withdrawal-induced anxiety and depression-like behaviours are reversible and transmissible via gut microbiota in a mouse model. The therapeutic effects of metformin on psychiatric manifestations are associated with microbiota-derived metabolites, highlighting the role of the gut microbiota in substance use disorders and the pathophysiology of withdrawal symptoms.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metformina , Metanfetamina , Microbiota , Síndrome de Abstinência a Substâncias , Animais , Ansiedade/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/microbiologia , Inosina , Metformina/farmacologia , Camundongos , Ratos , Síndrome de Abstinência a Substâncias/metabolismo
10.
Front Mol Neurosci ; 15: 829886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295707

RESUMO

Methamphetamine (MA) abuse results in neurotoxic outcomes, including increased anxiety and depression. Studies have reported an association between MA exposure and anxiety, nonetheless, the underlying mechanism remains elusive. In the present study, we developed a mouse model of anxiety-like behavior induced by MA administration. RNA-seq was then performed to profile the gene expression patterns of hippocampus (HIPP), and the differentially expressed genes (DEGs) were significantly enriched in signaling pathways related to psychiatric disorders and mitochondrial function. Based on these, mitochondria was hypothesized to be involved in MA-induced anxiety. Quercetin, as a mitochondrial protector, was used to investigate whether to be a potential treatment for MA-induced anxiety; accordingly, it alleviated anxiety-like behavior and improved mitochondrial impairment in vivo. Further experiments in vitro suggested that quercetin alleviated the dysfunction and morphological abnormalities of mitochondria induced by MA, via decreasing the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and increasing the oxygen consumption rate (OCR) and ATP production. Moreover, the study examined the effect of quercetin on astrocytes activation and neuroinflammation, and the results indicated that it significantly attenuated the activation of astrocytes and reduced the levels of IL-1ß, TNFα but not IL-6. In light of these findings, quantitative evidence is presented in the study supporting the view that MA can evoke anxiety-like behavior via the induction of mitochondrial dysfunction. Quercetin exerted antipsychotic activity through modulation of mitochondrial function and neuroinflammation, suggesting its potential for further therapeutic development in MA-induced anxiety.

11.
Front Immunol ; 12: 730300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489980

RESUMO

Heroin addiction and withdrawal influence multiple physiological functions, including immune responses, but the mechanism remains largely elusive. The objective of this study was to investigate the molecular inflammatory interactome, particularly the cytokines and transcriptome regulatory network in heroin addicts undergoing withdrawal, compared to healthy controls (HCs). Twenty-seven cytokines were simultaneously assessed in 41 heroin addicts, including 20 at the acute withdrawal (AW) stage and 21 at the protracted withdrawal (PW) stage, and 38 age- and gender-matched HCs. Disturbed T-helper(Th)1/Th2, Th1/Th17, and Th2/Th17 balances, characterized by reduced interleukin (IL)-2, elevated IL-4, IL-10, and IL-17A, but normal TNF-α, were present in the AW subjects. These imbalances were mostly restored to the baseline at the PW stage. However, the cytokines TNF-α, IL-2, IL-7, IL-10, and IL-17A remained dysregulated. This study also profiled exosomal long non-coding RNA (lncRNA) and mRNA in the plasma of heroin addicts, constructed co-expression gene regulation networks, and identified lncRNA-mRNA-pathway pairs specifically associated with alterations in cytokine profiles and Th1/Th2/Th17 imbalances. Altogether, a large amount of cytokine and exosomal lncRNA/mRNA expression profiling data relating to heroin withdrawal was obtained, providing a useful experimental and theoretical basis for further understanding of the pathogenic mechanisms of withdrawal symptoms in heroin addicts.


Assuntos
Ácidos Nucleicos Livres/sangue , Citocinas/sangue , Usuários de Drogas , Vesículas Extracelulares/metabolismo , Dependência de Heroína/sangue , RNA Longo não Codificante/sangue , RNA Mensageiro/sangue , Síndrome de Abstinência a Substâncias/sangue , Subpopulações de Linfócitos T/metabolismo , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Ácidos Nucleicos Livres/genética , Vesículas Extracelulares/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Dependência de Heroína/genética , Dependência de Heroína/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/imunologia , Subpopulações de Linfócitos T/imunologia , Fatores de Tempo , Transcriptoma , Adulto Jovem
12.
Aging (Albany NY) ; 13(14): 18669-18688, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282053

RESUMO

BACKGROUND: Heroin addiction and withdrawal have been associated with an increased risk for infectious diseases and psychological complications. However, the changes of metabolites in heroin addicts during withdrawal remain largely unknown. METHODS: A total of 50 participants including 20 heroin addicts with acute abstinence stage, 15 with protracted abstinence stage and 15 healthy controls, were recruited. We performed metabolic profiling of plasma samples based on ultraperformance liquid chromatography coupled to tandem mass spectrometry to explore the potential biomarkers and mechanisms of heroin withdrawal. RESULTS: Among the metabolites analyzed, omega-6 polyunsaturated fatty acids (linoleic acid, dihomo-gamma-linolenic acid, arachidonic acid, n-6 docosapentaenoic acid), omega-3 polyunsaturated fatty acids (docosahexaenoic acid, docosapentaenoic acid), aromatic amino acids (phenylalanine, tyrosine, tryptophan), and intermediates of the tricarboxylic acid cycle (oxoglutaric acid, isocitric acid) were significantly reduced during acute heroin withdrawal. Although majority of the metabolite changes could recover after months of withdrawal, the levels of alpha-aminobutyric acid, alloisoleucine, ketoleucine, and oxalic acid do not recover. CONCLUSIONS: In conclusion, the plasma metabolites undergo tremendous changes during heroin withdrawal. Through metabolomic analysis, we have identified links between a framework of metabolic perturbations and withdrawal stages in heroin addicts.


Assuntos
Dependência de Heroína/sangue , Heroína/toxicidade , Metabolômica , Síndrome de Abstinência a Substâncias/sangue , Adulto , Aminoácidos Aromáticos/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Humanos , Masculino , Ácidos Tricarboxílicos/sangue
13.
Sci Rep ; 11(1): 6271, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737514

RESUMO

Psychiatric disorders such as anxiety and depression precipitated by substance use occurred during both use and withdrawal. Exosomes play significant roles in biological functions and regulate numerous physiological and pathological processes in various diseases, in particular substance use disorders (SUDs) and other psychiatric disorders. To better understand the role of exosomal miRNAs in the pathology of symptoms of anxiety and depression in patients with SUDs, we first isolated circulating exosomes from heroin-dependent patients (HDPs) and methamphetamine-dependent patients (MDPs) and identified exosomal miRNAs that were differentially expressed between patients and healthy controls (HCs). Furthermore, the correlations between exosomal DE-miRNAs and symptoms of anxiety and depression which were measured using Hamilton-Anxiety (HAM-A)/Hamilton-Depression (HAM-D) Rating Scales in the participants. Notably, the expression level of exosomal hsa-miR-16-5p, hsa-miR-129-5p, hsa-miR-363-3p, and hsa-miR-92a-3p showed significantly negative correlations with HAM-A scores in both HDPs and MDPs. But all of the 4 DE-miRNAs lost significant correlations with HAM-D scores in HDPs. Functional annotation analyses showed that the target genes of the DE-miRNAs were mainly enriched for "synapse", "cell adhesion", "focal adhesion" and "MHC class II protein complex". Our study suggests that a set of circulating exosomal miRNAs were associated with anxiety and depression in SUD patients and may have clinical utility as diagnostic and prognostic biomarkers.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/sangue , Transtornos Relacionados ao Uso de Anfetaminas/epidemiologia , Ansiedade/sangue , Ansiedade/epidemiologia , MicroRNA Circulante/sangue , Depressão/sangue , Depressão/epidemiologia , Exossomos/metabolismo , Dependência de Heroína/sangue , Dependência de Heroína/epidemiologia , Adulto , Transtornos de Ansiedade/epidemiologia , Biomarcadores/sangue , Estudos de Casos e Controles , MicroRNA Circulante/genética , Análise por Conglomerados , Comorbidade , Transtorno Depressivo/epidemiologia , Feminino , Humanos , Masculino , Prognóstico , RNA-Seq/métodos
14.
Front Endocrinol (Lausanne) ; 12: 801686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046900

RESUMO

Background: The pathogenesis of methamphetamine usedisorders (MUDs) remains largely unknown; however, bile acids may play arole as potential mediators of liver injury and psychiatric comorbidities.The aim of this study was to characterize bile acid (BA) profiles in plasmaof patients with MUDs undergoing withdrawal. Methods: Liver functions and psychiatric symptoms wereevaluated in a retrospective cohort (30 MUDs versus 30 control subjects) andan exploratory cohort (30 MUDs including 10 subjects each at the 7-day,3-month, and 12-month withdrawal stages versus 10 control subjects). BAcompositions in plasma samples from MUD patients in the exploratory cohortwere determined by gas-liquid chromatography. Results: Both psychiatric comorbidities andmethamphetamine-induced liver injury were observed in patients in both MUDcohorts. The plasma concentrations of the total BA, cholic acid (CA), andchenodeoxycholic acid (CDCA) were lower in MUD patients relative tocontrols. The maximum decline was observed at the 3-month stage, withgradual recovery at the 12-month stage. Notably, the ratios of deoxycholicacid (DCA)/CA and lithocholic acid (LCA)/CDCA were statistically significantat the 3-month stage comparing with controls. Significant correlations werefound between the LCA/CDCA and taurolithocholic acid (TLCA)/CDCA ratios andthe levels of alanine transaminase and aspartate aminotransferase, andbetween the LCA/CDCA ratio and the HAM-A score. Conclusion: BA profile during METH withdrawal weremarkedly altered, with these unbalanced BAs being associated with liverinjury. The associations between BA profiles and psychiatric symptomssuggest an association between specific BAs and disease progression,possibly through the liver-brain axis.


Assuntos
Ácidos e Sais Biliares/sangue , Fígado/lesões , Transtornos Mentais/sangue , Metanfetamina/efeitos adversos , Síndrome de Abstinência a Substâncias/sangue , Adulto , Humanos , Masculino , Transtornos Mentais/complicações , Pessoa de Meia-Idade , Estudos Retrospectivos , Síndrome de Abstinência a Substâncias/complicações
15.
Oncol Rep ; 44(6): 2569-2580, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125137

RESUMO

Statins, a class of commonly prescribed cholesterol­lowering medications, have been revealed to influence the risk of multiple types of cancer. However, the antitumor effects of statins on pancreatic cancer and their differential efficacy among a variety of statins are not currently well­defined. The aim of the present study was therefore to identify and compare the genes and related biological pathways that were affected by each individual statin on pancreatic cancer. Two human pancreatic cancer cell lines, MiaPaCa2 and PANC1, were exposed to three statins, lovastatin, fluvastatin and simvastatin. The inhibitory effect of statins on pancreatic cancer cell proliferation was first validated. Next, RNA­seq analysis was used to determine the gene expression alterations in either low (2 µM) or high (20 µM) statin concentration­treated cancer cells. Marked differences in gene transcription profiles of both pancreatic cancer cell lines exposed to high concentration statins were observed. Notably, the high concentration statins significantly suppressed core­gene CCNA2­associated cell cycle and DNA replication pathways and upregulated genes involved in ribosome and autophagy pathways. However, the low concentration statin­induced gene expression alterations were only detected in MiaPaCa2 cells. In conclusion, a marked difference in the intra and inter cell­type performance of pancreatic cancer cells exposed to a variety of statins at low or high concentrations was reported herein, which may provide insights for the potential clinical use of statins in future pancreatic cancer therapeutics.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina A2/metabolismo , Replicação do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluvastatina/farmacologia , Fluvastatina/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico
16.
Ann Transl Med ; 8(24): 1669, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33490181

RESUMO

BACKGROUND: Methamphetamine use has become a serious global public health problem and puts increasing burdens on healthcare services. Abdominal complications caused by methamphetamine use are uncommon and often go ignored by clinicians. The exact intestinal pathological alterations and transcriptomic responses associated with methamphetamine use are not well understood. This study sought to investigate the transcriptome in a methamphetamine-induced mouse model of inflammatory bowel disease (IBD) using next-generation RNA sequencing. METHODS: Tissues from the ileum of methamphetamine-treated mice (n=5) and control mice (n=5) were dissected, processed and applied to RNA-sequencing. Bioinformatics and histopathological analysis were then performed. The expression profiles of intestinal tissue samples were analyzed and their expression profiles were integrated to obtain the differentially expressed genes and analyzed using bioinformatics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes were performed using Metascape. RESULTS: A total of 326 differentially expressed genes were identified; of these genes, 120 were upregulated and 206 were downregulated. The Gene Ontology analysis showed that the biological processes of the differentially expressed genes were focused primarily on the regulation of cellular catabolic processes, endocytosis, and autophagy. The main cellular components included the endoplasmic and endocytic vesicles, cytoskeleton, adherens junctions, focal adhesions, cell body, and lysosomes. Molecular functions included protein transferase, GTPase and proteinase activities, actin-binding, and protein-lipid complex binding. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differentially expressed genes were mainly involved in bacterial invasion of epithelial cells, protein processing in the endoplasmic reticulum, regulation of the actin cytoskeleton, and T-cell receptor signaling pathways. A set of overlapping genes between IBD and methamphetamine-treated intestinal tissues was discovered. CONCLUSIONS: The present study is the first to analyze intestinal samples from methamphetamine-treated mice using high-throughput RNA sequencing. This study revealed key molecules that might be involved in the pathogenesis of a special type of methamphetamine-induced IBD. These results offer new insights into the relationship between methamphetamine abuse and IBD.

17.
Biochem Cell Biol ; 98(2): 267-276, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31013436

RESUMO

BACKGROUND: This study focuses on the lncRNA XIST (X inactive-specific transcript), an lncRNA involved in multiple human cancers, and investigates the functional significance of XIST and the molecular mechanisms underlying the epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC). METHODS: Clinical specimens from 25 patients as well as 5 human PC cell lines were analyzed for XIST, YAP, and microRNA(miR)-34a by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. To investigate how XIST influences cell proliferation, invasiveness, and apoptosis in PC, we performed the CCK-8 assays, Transwell assays, and flow cytometry. Luciferase reporter assays, qRT-PCR, and Western blot were applied to prove that miR-34a directly binds to XIST. RESULTS: Up-regulation of XIST and Yes associated protein (YAP) and down-regulation of miR-34a were consistently observed in the clinical specimens and PC cell lines. Silencing XIST reduced the expression of YAP and suppressed transforming growth factor (TGF)-ß1-induced EMT, while over-expression of XIST increased the expression of YAP and promoted EMT. In addition, inhibition of epidermal growth factor receptor (EGFR) hampered the XIST-promoted EMT. The results from the luciferase reporter assays confirmed that miR-34a directly targets XIST and suggested that XIST regulates cell proliferation, invasiveness, and apoptosis in PC by sponging miR-34a. CONCLUSIONS: XIST promotes TGF-ß1-induced EMT by regulating the miR-34a-YAP-EGFR axis in PC.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/metabolismo , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta1/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , MicroRNAs/metabolismo , Invasividade Neoplásica , Fenótipo , Prognóstico
18.
Toxicol Lett ; 321: 73-82, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862507

RESUMO

An enterogenic infection occurs when intestinal mucosal disruption is followed by the invasion of intestinal bacteria into the blood and distant organs, which can result in severe diseases or even death. Our previous study using Rhesus monkeys as an in vivo model revealed that methamphetamine (MA) induced intestinal mucosal barrier damage, which poses a high risk of enterogenic infection. However, how methamphetamine causes intestinal mucosal barrier damage remains largely unknown. In this study, we employed an in vitro model, and found that MA treatment could inhibit the expression of miR-181c, which directly targets and regulates TNF-α, and ultimately induces apoptosis and damages the intestinal barrier. Moreover, we measured TNF-α serum levels as well as the intestinal mucosal barrier damage indicators (diamine oxidase, d-lactic acid, and exotoxin) and found that their levels were significantly higher in MA-dependents than in healthy controls (P < 0.001). To the best of our knowledge, this is the first report evidencing that miR-181c is involved in MA-induced intestinal barrier injury via TNF-α regulation, which introduces novel potential therapeutic targets for MA-dependent intestinal diseases.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Estimulantes do Sistema Nervoso Central/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Metanfetamina/efeitos adversos , MicroRNAs/metabolismo , Junções Íntimas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Adulto , Transtornos Relacionados ao Uso de Anfetaminas/sangue , Transtornos Relacionados ao Uso de Anfetaminas/genética , Transtornos Relacionados ao Uso de Anfetaminas/patologia , Animais , Apoptose/efeitos dos fármacos , Translocação Bacteriana/efeitos dos fármacos , Biomarcadores/sangue , Estudos de Casos e Controles , Linhagem Celular , Impedância Elétrica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Permeabilidade , Ratos , Transdução de Sinais , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Adulto Jovem
19.
Med Sci Monit ; 25: 8515-8526, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712546

RESUMO

BACKGROUND Methamphetamine (METH), a confirmed neurotoxic drug, has also reportedly caused several intestinal inflammatory injury cases. The NLRP3 (Nod-like receptor 3 protein) inflammasome can induce several inflammatory injuries by activating IL-1ß and IL-18 when overexpressed. We designed experiments to determine whether METH can cause intestinal inflammatory injury via NLRP3 inflammasome overexpression. MATERIAL AND METHODS IEC-6 cells were classified as control, METH (0.5 mM), and METH (0.5 mM)+MCC950 (100 µM) groups. C57BL/6 mice were separated into control, NS, METH (5 mg/kg), and METH (5 mg/kg)+MCC950 (10 mg/kg) groups (n=10). We detected apoptosis, transepithelial electrical resistance (TEER), and proinflammatory factors (IL-6, INF-γ, TNF-alpha, and NF-kappaB) in the METH cell model. We also assessed proinflammatory factors (IL-6, INF-γ, TNF-alpha, and NF-kappaB) and observed intestinal tissues stained with hematoxylin and eosin (HE) in the METH animal model to explore intestinal inflammatory injury due to METH. After adding MCC950 (an NLRP3 inflammasome inhibitor), we additionally detected NLRP3 inflammasome components (NLRP3, Caspase-1, and ASC), IL-1ß, and IL-18 to estimate the relationship of the NLRP3 inflammasome with intestinal inflammatory injury due to METH. RESULTS METH can lead apoptosis, increase proinflammatory factors (e.g., IL-6, INF-γ, TNF-alpha, and NF-kappaB), and decrease TEER in the METH cell model. In the METH animal model, METH can cause obvious injury and increase proinflammatory factors (e.g., IL-6, INF-γ, TNF-alpha, and NF-kappaB). All the intestinal inflammatory changes due to METH depended on overexpression of the NLRP3 inflammasome and could be ameliorated by MCC950, except for ASC and NF-kappaB. CONCLUSIONS METH, in addition to being a confirmed neurotoxic drug, can also cause severe intestinal inflammatory injury via NLRP3 inflammasome overexpression. NF-kappaB may be an activator of the NLRP3 inflammasome in METH intestinal inflammatory injury.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Metanfetamina/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/metabolismo , Masculino , Metanfetamina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA
20.
J Glob Antimicrob Resist ; 19: 192-193, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520808

RESUMO

OBJECTIVES: The rapid spread of Klebsiella spp. is recognised as a major threat to public health owing to a rise in the number both of healthcare- and community-acquired infections. Here we report the draft genome sequence of a high carbapenem-resistant Klebsiella quasipneumoniae subsp. quasipneumoniae strain (Cln185) isolated from a human immunodeficiency virus (HIV)-positive patient with pneumonia. METHODS: Classical microbiological methods were applied to isolate and identify the strain. Genomic DNA was sequenced using an Illumina HiSeq platform and the reads were de novo assembled into contigs using CLC Genomics Workbench. The assembled contigs was annotated and whole-genome sequencing (WGS) was performed. RESULTS: WGS analysis revealed that the genome comprised a circular chromosome of 5 406 774bp with a GC content of 57.73%. Three important antimicrobial resistance genes (blaIMP-38, blaOKP-B-6 and blaDHA-1) were detected. In addition, genes conferring resistance to aminoglycosides, ß-lactams, fluoroquinolones and tetracycline were also identified. CONCLUSION: The draft genome sequence reported here will lay the foundation for future research on antimicrobial resistance and pathogenic mechanisms in K. quasipneumoniae subsp. quasipneumoniae and also will promote comparative analysis with genomic features among different sources of clinically important multidrug-resistant strains.


Assuntos
Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por HIV/microbiologia , Klebsiella/genética , Pneumonia/microbiologia , Sequenciamento Completo do Genoma/métodos , Adulto , Composição de Bases , Coinfecção , Tamanho do Genoma , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Klebsiella/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...