Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.439
Filtrar
1.
Sci Total Environ ; 932: 173094, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729378

RESUMO

The SDG 15.3.1 target of Land Degradation Neutrality (LDN) only has 15 years from conception (in 2015) to realization (in 2030). Therefore, investigating the effectiveness and challenges of LDN has become a priority, especially in drylands, where fragile ecosystems intersect with multiple disturbances. In this study, solutions are proposed and validated based on the challenges of LDN. We chose the Northern Slope of the Tianshan Mountains as a case study and set baselines in 2005 and 2010. The region and degree of land change (including degraded, stable, and improved) were depicted at the pixel scale (100 × 100 m), and LDN realization was assessed at the regional scale (including administrative districts and 5000 × 5000 m grids). The results showed a significant disparity between the two baselines. The number of areas that realized the LDN target was rare, regardless of the scale of the administrative districts or grids. Chord plots, Spearman's correlation, and curve estimation were employed to reveal the relationship between LDN and seven natural or socioeconomic factors. We found that substantial degradation was closely related to the expansion of unused, urban, and mining land and reduction in water, glaciers, and forests. Further evidence suggests that agricultural development both positively and negatively affects LDN, whereas urbanization and mining activities are undesirable for LDN. Notably, the adverse effects of glacier melting require additional attention. Therefore, we consider the easy-to-achieve and hard-to-achieve baselines as the mandatory and desirable targets of LDN, respectively, and focus further efforts in three aspects: preventing agricultural exploitation from occupying ecological resources, defining reasonable zones for urbanization and mining, and reducing greenhouse gas emissions to mitigate warming. Overall, this study is expected to be a beneficial addition to existing LDN theoretical systems and serve as a case validation of the challenges of LDN in drylands.

2.
Biomed Pharmacother ; 175: 116701, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729053

RESUMO

Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have received considerable attention as anti-aging and anti-metabolic disease nutraceuticals. However, few studies have focused on their role in ameliorating hepatic metabolic disturbances. In the present study, the effects of NMN and NR on the liver of mice with nonalcoholic fatty liver disease (NAFLD) were investigated via transcriptome and metabolome analyses. NMN and NR reduced body weight gain, improved glucose homeostasis, regulated plasma lipid levels, and ameliorated liver injury, oxidative stress, and lipid accumulation in mice with HFD-induced NAFLD. Integrated transcriptome and metabolome analyses indicated that NMN and NR altered the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and linoleic acid metabolism pathways, increased saturated fatty acid (palmitic acid, stearate, and arachidic acid) content, and increased polyunsaturated fatty acid (linoleic acid and eicosapentaenoic acid) content. Quantitative reverse transcription PCR (qRT-PCR) showed that NMN and NR primarily promoted arachidonic acid and linoleic acid catabolism via cytochrome P450 (CYP450) enzymes. This study established a theoretical foundation for the potential use of NMN and NR in future clinical settings.

3.
Org Biomol Chem ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690868

RESUMO

A Lewis acid-promoted electrophilic thiocyanation/cyclization of ortho-alkynylanilines for the synthesis of indole derivatives has been developed. The reaction utilizes Me3SiBr as the Lewis acid and N-thiocyanatosuccinimide as the thiocyanation reagent. A series of 2-aryl-3-thiocyanato indoles were prepared in moderate to high yields under mild conditions without metals and oxidants. It provides an efficient protocol for the construction of the indole skeleton and C-SCN and C-N bonds in one step as well.

4.
Oncogene ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719950

RESUMO

Tumor cells undergoing partial epithelial-mesenchymal transition (pEMT) are pivotal in local invasion and lymphatic metastasis of oral squamous cell carcinoma (OSCC), yet the mechanisms behind pEMT reversal remain poorly understood. In this study, the loss of BARX2 expression was revealed during the process of oral epithelial carcinogenesis and identified to activate the pEMT program, facilitate metastasis, and be associated with poor prognosis. Restoring BARX2 expression in OSCC cell lines effectively reversed tumor pEMT, evident in E/N-Cadherin switching, reduced cell invasion, proliferation, and stemness, and inhibited murine lung metastasis. BARX2 re-expression negatively correlated with several pEMT markers, notably SERPINE2, which was enriched in the invasive OSCC front, enhancing stemness and promoting metastasis, particularly in cervical lymph nodes. Furthermore, rescuing SERPINE2 impaired the inhibitory effect of BARX2 on the pEMT programs and reconstructed ECM through re-expression of MMP1. Mechanistically, we identified that BARX2 inhibited SERPINE2 through activating miR-186-5p and miR-378a-3p. These miRNAs, upregulated by BARX2, post-transcriptionally degraded SERPINE2 mRNA via targeting specific sequences. Blocking miR-186-5p and miR-378a-3p effectively abolished the negative regulatory effect of BARX2 on SERPINE2. Overall, our findings highlight BARX2 as a partial EMT-reverser in OSCC, providing fresh therapeutic prospects for restoring BARX2 signaling to inhibit invasion and metastasis.

5.
J Colloid Interface Sci ; 669: 506-517, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38723539

RESUMO

Graphitic phase carbon nitride (g-C3N5), as a novel n-type metal-free material, is employed as a visible light-receptive catalyst because of its narrow band gap and abundant nitrogen. To overcome the low carrier mobility efficiency of g-C3N5, its modification by K ions was adopted. In addition, In2S3 was selected to couple with modified g-C3N5 to overcome the recombination of photogenerated e-/h+. As a novel photocatalytic material, it was proven to possess a high visible light absorption capacity and a strong H2O2 production ability (up to 3.89 mmol⋅L-1 in 2 h). Moreover, a S-scheme heterojunction structure was successfully constructed between the two materials, which was tested and confirmed to be successful in raising the photogenerated e-/h+ separation efficiency. Ultimately, the primary processes of photocatalytic H2O2 production were summarized by superoxide radical and rotating disc electron measurements. This research provides a fresh perspective for the synthesis of C3N5-based S-scheme heterojunction photocatalysts for producing H2O2.

6.
Chemistry ; : e202400453, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634800

RESUMO

The remote C(sp3)-SCN bond formation via ring-opening functionalization of cycloalkanols with N-thiocyanatosaccharin as the precursor of SCN radicals and pyrylium salt as the organic photocatalyst under visible light has been developed. Thus, various terminal keto thiocyanates were prepared without transition metals and oxidants in moderate to good yields. The simplicity, wide substrate scope and mild conditions feature its synthetic application capability.

7.
Autism Res ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641916

RESUMO

To date, information on associations between motor skills and executive functions (EF) in autistic children is limited. The purpose of this study was to compare motor skills and EF performance between autistic children and typically developing (TD) children and to examine the relationships between motor skills and EF in these two groups. Forty-eight autistic children and 48 TD children aged 6 to 12 years were recruited for this study. Motor skills were measured with the Bruininks-Oseretsky Test of Motor Proficiency-2 (BOT-2). EF was assessed with the Stroop Color and Word Test, the Wisconsin Card Sorting Task (WCST), and the Test of Attentional Performance: Go/No-go test. Independent sample t-tests were used to compare the BOT-2 scores and EF measures between autistic children and TD children. Pearson product-moment correlation and regressions were conducted to assess the relationships between the BOT-2 scores and the EF measures for each group. Results showed that autistic children scored significantly lower than TD children on all four BOT-2 composite scores and a total motor composite. Autistic children also demonstrated significantly lower levels of performance on all EF measures than TD children. Further, autistic children showed more significant associations between motor skills and EF than TD children, particularly pronounced in the domains of fine manual control and manual coordination to cognitive flexibility, as well as manual coordination and inhibitory control. Continued development of motor skills and EF in autistic children is important. The relationships between motor skills and EF were significant among autistic children, suggesting future research on promoting EF through motor skill interventions in autistic children is required.

8.
Drug Discov Today ; : 103989, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663580

RESUMO

As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.

9.
Transplantation ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644534

RESUMO

BACKGROUND: Immunological rejection is the most common reason for corneal transplantation failure. The importance of T cells in corneal allograft rejection is well demonstrated. Recent studies highlight that pigment epithelium-derived factor (PEDF) plays an immunoregulatory role in ocular diseases by enhancing the suppressive phenotype of regulatory T cells besides its other functions in neurotrophy and antiangiogenesis. METHODS: The effects of PEDF on immune rejection were examined in rat models of corneal transplantation using slit-lamp microscope observation, immunohistochemistry, flow cytometry, and Western blot. In vitro, we demonstrated PEDF reduced alloreactive T-cell activation using real-time polymerase chain reaction, flow cytometry, and Western blot. RESULTS: Topical administration of PEDF provided corneal transplantation rats with an improved graft survival rate of corneal allografts, reduced hemangiogenesis, and infiltration of immune cells in corneas, in particular, type 17 T helper cells while increased regulatory T cells. Moreover, nerve reinnervation within grafts was promoted in PEDF-treated recipient rats. In vitro, PEDF inhibited alloreactive T-cell activation via the c-Jun N-terminal kinase/c-Jun signaling pathway and upregulated the expressions of interleukin-10 and transforming growth factor-ß, emphasizing the suppressive role of PEDF on immune responses. CONCLUSIONS: Our results underscore the feasibility of PEDF in alleviating corneal allograft rejection and further illustrate its potential in managing immune-related diseases.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38637236

RESUMO

Rhabdomyosarcoma with TFCP2-related fusions (TFCP2-RMS) is a rare entity that commonly affects young adults with a predilection for skeletal involvement. We herein report a 40-year-old female patient with TFCP2-RMS who was misdiagnosed as fibrous dysplasia or low-grade central osteosarcoma of the mandible by referring institutions. Histologically, the tumor showed dominant spindle cells and focal epithelioid cells with marked immature woven bone formation. Immunophenotypically, in addition to the characteristic expression of myogenic markers, ALK, and cytokeratins, tumor cells also unusually expressed osteogenic markers, such as MDM2 and SATB2. Through fluorescence in situ hybridization, the tumor cells showed EWSR1::TFCP2 gene fusion and no MDM2 gene amplification. This is a rare case of TFCP2-RMS, which was misdiagnosed as low-grade central osteosarcoma due to its presenting immunophenotype of MDM2 and SATB2, as well as extensive osteoid matrix formation.

11.
Huan Jing Ke Xue ; 45(5): 2828-2839, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629545

RESUMO

It is of great practical significance for regional sustainable development and ecological construction to quantitatively analyze the impact of construction land expansion on terrestrial ecosystem carbon storage and to explore the optimization scheme of simulating construction land expansion to improve future ecosystem carbon storage. Based on the land use and cover change (LUCC) and other geospatial data of the Beijing-Tianjin-Hebei Urban Agglomeration from 2000 to 2020, this study utilized the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and the patch-generating land-use simulation (PLUS) model to assess and analyze the changes in ecosystem carbon stocks and spatial patterns regionally. In this study, we performed linear regression analysis to investigate the relationship between urban land expansion and changes in ecosystem carbon stocks for varying urban land proportion levels during two distinct time intervals, 2000-2010 and 2010-2020, which was conducted at a spatial resolution of 2 km. Three distinct urban land expansion scenarios were subjected to simulation to forecast the prospective land use pattern by 2030. Subsequently, we quantified the ramifications of these scenarios on ecosystem carbon stocks during the period from 2020 to 2030. The results were as follows:① In the Beijing-Tianjin-Hebei Urban Agglomeration, the ecosystem carbon stocks exhibited notable variations over the study period, with values of 2 088.02, 2 106.78, and 2 121.25 Tg recorded for the years 2000, 2010, and 2020, respectively, resulting in a cumulative carbon sequestration of 33.23 Tg C during the study duration. It is noteworthy that forest carbon storage emerged as the dominant contributor, with an increase from 1 010.17 Tg in 2000 to 1 136.53 Tg in 2020. Throughout the study period, the spatial distribution of carbon stocks displayed relative stability. Regions characterized by lower carbon content were concentrated in the vicinity of the Bohai Rim region and in proximity to cities such as Beijing, Tianjin, and Shijiazhuang, as well as rural settlements. In contrast, grid units with moderate and high carbon stocks were predominantly situated in the western Taihang Mountain and the northern Yanshan Mountain. Additionally, there was a tendency of increasing carbon stocks in the Taihang Mountain and Yanshan Mountain region, whereas those surrounding major urban centers such as Beijing, Tianjin, Shijiazhuang, and Tangshan experienced a notable decline in carbon stocks. Such reductions were most pronounced in regions undergoing urban land expansion during the study period. ② In grid units with an urban land proportion exceeding 10% at each level, a strong correlation was observed between urban land expansion and changes in carbon stocks during both the 2000-2010 and 2010-2020 periods. The changes in urban land proportion adequately explained the variations in carbon stocks. However, the explanatory power of urban land on carbon stocks decreased during the 2010-2020 period, indicating that other factors played a more substantial role in influencing carbon stocks during this time. The regression coefficients for both periods exhibited a fluctuating upward trend. In comparison to that during the 2000-2010 period, the impact of urban land expansion on carbon stocks was relatively smaller during 2010-2020, indicating a weakening influence. ③ In light of three distinct development scenarios, namely natural development (Scenario Ⅰ), a 15% reduction in the rate of urban land expansion (Scenario Ⅱ), and a 30% reduction in the rate of urban land expansion (Scenario Ⅲ), the projected ecosystem carbon stocks for the Beijing-Tianjin-Hebei Urban Agglomeration in the year 2030 were estimated to be 2 129.12, 2 133.55, and 2 139.10 Tg, respectively. These projections indicated an increase of 7.88, 12.30, and 17.85 Tg in comparison to the current carbon stocks. All scenarios demonstrated that the terrestrial ecosystem would play a role of carbon sink, particularly with the greatest carbon sink observed in the scenario with a 30% reduction in urban land expansion. The fit performance between urban land expansion and carbon stock changes during the 2020-2030 period was significantly better than that during the 2000-2010 and 2010-2020 periods, and the regression coefficients showed a fluctuating increase with an increase in urban land proportion. Across grid units with different urban land proportion levels, the regression coefficients exhibited the order of Scenario Ⅰ < Scenario Ⅱ < Scenario Ⅲ. In pursuit of the carbon peaking and carbon neutrality goals, the Beijing-Tianjin-Hebei Urban Agglomeration should prioritize scenarios with reduced rates of urban land expansion, especially in regions with higher urban land proportions.

12.
Ann Med Surg (Lond) ; 86(4): 2137-2142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576944

RESUMO

The causal relationship between physical activity and anti-cancer effect are not proved by the current studies. However, Ou MC decrescendo phenomenon treatment (OuDPt), a simple exercise treatment, has shown consistent anti-cancer effects, which evinces the consequent anti-cancer effect by physical activity. The anti-cancer effects through OuDPt in the context of physical activity and human body anatomical axes showed to induce apoptosis, restore apical-basal polarity of cancer cells and mitigate epithelial-mesenchymal transition (EMT) with concomitant clinical regression of uterine endometrial cancer, suppression of ovarian and pancreatic cancer growth, regression of early suspicious pancreatic cancer, enhancement of chemotherapy effect of pancreatic cancer and cessation of cancer-related bleeding, which underlines the most important anti-cancer mechanisms. Although such anti-cancer effects by OuDPt show insufficient efficacy for advanced cancer in long-term treatment, OuDPt may be availed as an Ou MC decrescendo phenomenon exercise for cancer prevention. Further study is warranted.

13.
Nat Commun ; 15(1): 2925, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575649

RESUMO

The advancement of laser-induced graphene (LIG) technology has streamlined the fabrications of flexible graphene devices. However, the ultrafast kinetics triggered by laser irradiation generates intrinsic amorphous characteristics, leading to high resistivity and compromised performance in electronic devices. Healing graphene defects in specific patterns is technologically challenging by conventional methods. Herein, we report the rapid rectification of LIG's topological defects by flash Joule heating in milliseconds (referred to as F-LIG), whilst preserving its overall structure and porosity. The F-LIG exhibits a decreased ID/IG ratio from 0.84 - 0.33 and increased crystalline domain from Raman analysis, coupled with a 5-fold surge in conductivity. Pair distribution function and atomic-resolution imaging delineate a broader-range order of F-LIG with a shorter C-C bond of 1.425 Å. The improved crystallinity and conductivity of F-LIG with excellent flexibility enables its utilization in high-performance soft electronics and low-voltage disinfections. Notably, our F-LIG/polydimethylsiloxane strain sensor exhibits a gauge factor of 129.3 within 10% strain, which outperforms pristine LIG by 800%, showcasing significant potential for human-machine interfaces.

14.
Nat Chem ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570729

RESUMO

Lithium metal batteries represent a promising technology for next-generation energy storage, but they still suffer from poor cycle life due to lithium dendrite formation and cathode cracking. Fluorinated solvents can improve battery longevity by improving LiF content in the solid-electrolyte interphase; however, the high cost and environmental concerns of fluorinated solvents limit battery viability. Here we designed a series of fluorine-free solvents through the methylation of 1,2-dimethoxyethane, which promotes inorganic LiF-rich interphase formation through anion reduction and achieves high oxidation stability. The anion-derived LiF interphases suppress lithium dendrite growth on the lithium anode and minimize cathode cracking under high-voltage operation. The Li+-solvent structure is investigated through in situ techniques and simulations to draw correlations between the interphase compositions and electrochemical performances. The methylation strategy provides an alternative pathway for electrolyte engineering towards high-voltage electrolytes while reducing dependence on expensive fluorinated solvents.

15.
Lab Chip ; 24(9): 2397-2417, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623840

RESUMO

Optical techniques, such as optogenetic stimulation and functional fluorescence imaging, have been revolutionary for neuroscience by enabling neural circuit analysis with cell-type specificity. To probe deep brain regions, implantable light sources are crucial. Silicon photonics, commonly used for data communications, shows great promise in creating implantable devices with complex optical systems in a compact form factor compatible with high volume manufacturing practices. This article reviews recent developments of wafer-scale multifunctional nanophotonic neural probes. The probes can be realized on 200 or 300 mm wafers in commercial foundries and integrate light emitters for photostimulation, microelectrodes for electrophysiological recording, and microfluidic channels for chemical delivery and sampling. By integrating active optical devices to the probes, denser emitter arrays, enhanced on-chip biosensing, and increased ease of use may be realized. Silicon photonics technology makes possible highly versatile implantable neural probes that can transform neuroscience experiments.


Assuntos
Encéfalo , Encéfalo/fisiologia , Humanos , Animais , Mapeamento Encefálico/instrumentação , Neurônios/fisiologia , Neurônios/citologia , Silício/química , Nanotecnologia/instrumentação , Optogenética/instrumentação
16.
Int J Biol Macromol ; 264(Pt 1): 130575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432270

RESUMO

Hydroxypropyl guar gum (HPG) is a critical thickener to increase viscosity and lubrication to improve the water-based hydraulic fracturing efficiency. However, current crosslinkers require a large amount of HPG (>0.3 wt%) to form gel with sufficient viscosity, and high concentrations of HPG may cause adverse effects to the production and the environment. In this study, a novel starch microsphere silica­boron crosslinker (SMSB) was developed using starch microspheres as a carrier and γ-aminopropyl triethoxy silane (KH550) as a modifier with an in-house method. Both the rheology and surface reactions of the SMSB-HPG crosslinking system were studied using multiple laboratory experiments and molecular dynamics simulation. The results showed that SMSB crosslinker caused multi-site cross-linking with low concentration (only 0.2 wt%) of HPG molecules, reducing the twisting of single molecular chain in the crosslinking system, enhancing the cross-linking strength between molecular chains, and making HPG molecular chains stretcher in the aqueous solution. The apparent viscosity and viscoelasticity of the HPG system were substantially higher than the organoboron crosslinker, and the temperature resistance of the SMSB-HPG crosslinking system was up to 140 °C. This study provides an alternative green crosslinker for more sustainable industrial applications and provides theoretical basis for the modification of biomaterials.


Assuntos
Boro , Polissacarídeos , Amido , Silício , Microesferas , Galactanos , Mananas , Gomas Vegetais , Água
17.
Food Chem Toxicol ; 187: 114586, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493978

RESUMO

The risk assessment of heavy metals in tea is extremely imperative for the health of tea consumers. However, the effects of varietal variations and seasonal fluctuations on heavy metals and minerals in tea plants remain unclear. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to evaluate the contents of aluminum (Al), manganese (Mn), magnesium (Mg), boron (B), calcium (Ca), copper (Cu), cobalt (Co), iron (Fe), sodium (Na), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and antimony (Sb) in the two categories of young leaves (YL) and mature leaves (ML) of tea (Camellia sinensis) cultivars throughout the growing seasons. The results showed significant variations in the contents of the investigated nutrients both among the different cultivars and growing seasons as well. Furthermore, the average concentrations of Al, Mn, Mg, B, Ca, Cu, Co, Fe, Na, Zn, As, Cd, Cr, Ni, and Sb in YL ranged, from 671.58-2209.12, 1260.58-1902.21, 2290.56-2995.36, 91.18-164.68, 821.95-5708.20, 2.55-3.80, 3.96-25.22, 37.95-202.84, 81.79-205.05, 27.10-69.67, 0.028-0.053, 0.065-0.127, 2.40-3.73, 10.57-12.64, 0.11-0.14 mg kg-1, respectively. In ML, the concentrations were 2626.41-7834.60, 3980.82-6473.64, 3335.38-4537.48, 327.33-501.70, 9619.89-13153.68, 4.23-8.18, 17.23-34.20, 329.39-567.19, 145.36-248.69, 40.50-81.42, 0.089-0.169, 0.23-0.27, 5.24-7.89, 18.51-23.97, 0.15-0.19 mg kg-1, respectively. The contents of all analyzed nutrients were found to be higher in ML than in YL. Target hazard quotients (THQ) of As, Cd, Cr, Ni, and Sb, as well as the hazard index (HI), were all less than one, suggesting no risk to human health via tea consumption. This research might provide the groundwork for essential minerals recommendations, as well as a better understanding and management of heavy metal risks in tea.


Assuntos
Arsênio , Camellia sinensis , Metais Pesados , Humanos , Estações do Ano , Cádmio/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Arsênio/análise , Minerais , Cromo/análise , Níquel/análise , Manganês/análise , Alumínio/análise , Medição de Risco , Zinco/análise , Chá/química
18.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460406

RESUMO

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Assuntos
Ammi , Poluentes do Solo , Titânio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análise , Ecossistema , Estresse Oxidativo , Solo , Expressão Gênica , Poluentes do Solo/análise
19.
Sci Total Environ ; 927: 171972, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554970

RESUMO

Mounting evidence suggests that environmental pollutants may affect reproductive health, potentially leading to adverse outcomes like pregnancy loss. However, it remains unclear whether exposure to synthetic phenolic antioxidants (SPAs) correlates with early pregnancy loss (EPL). This study explores SPA exposure's link to EPL and its potential molecular mechanisms. From 2021 to 2022, 265 early pregnant women (136 serum and 129 villus samples) with and without EPL were enrolled. We quantified 17 SPAs in serum and chorionic villus, with AO1010, AO3114, BHT, AO2246, and BHT-Q frequently being detected, suggesting their ability to cross the placental barrier. AO1135 showed a positive relationship with EPL in sera, indicating a significant monotonic dose-response relationship (p-trend <0.001). BHT-Q exhibited a similar relationship with EPL in villi. Inhibitory effects of BHT-Q on estradiol (E2) were observed. Molecular docking revealed SPA-protein interactions involved in E2 synthesis. SPA-induced EPL might occur with specific serum levels of AO1135 and certain villus levels of AO1010, BHT-Q, and AO2246. BHT-Q emerges as a potential biomarker for assessing EPL risk. This study provides insights into understanding of the exposure to SPAs and potential adverse outcomes in pregnant women.


Assuntos
Aborto Espontâneo , Antioxidantes , Fenóis , Feminino , Humanos , Gravidez , Aborto Espontâneo/induzido quimicamente , Adulto , Simulação de Acoplamento Molecular , Poluentes Ambientais
20.
Heliyon ; 10(6): e27840, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545139

RESUMO

Background: In thyroid cancers, a reduction in the expression of the sodium/iodide symporter (NIS) is observed concomitant with a diminution in cancer cell differentiation. The ß-catenin/LEF-1 pathway emerges as a crucial regulatory pathway influencing the functional expression of NIS in human thyroid cancer cells. Further research is required to comprehensively elucidate the role of NIS overexpression in impeding the progression of thyroid cancer cells. Methods: Human papillary thyroid carcinoma (PTC) cell lines, specifically PTC-1 and KTC-1, were subjected to Scratch and Transwell assays, colony formation, and tumor sphere formation tests to investigate invasion and migration, focusing on the impact of NIS overexpression. The assessment involved the use of western blot to analyze the expression levels of ß-catenin, NIS, CD133, SRY-related HMG box2 (Sox2), lymphoid enhancer-binding factor 1 (LEF-1), NANOG, octamer-binding transcription factor 4 (Oct4), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and epithelial cellular adhesion molecule (EpCAM). Statistical analysis was conducted using SPSS version 20.0, and the graphs were developed using GraphPad Prism 7 (GraphPad Software, Inc.). Results: Our observations revealed that Nthy-ori-3-1 cell lines exhibited notably higher average expression levels of NIS, yet significantly lower levels of LEF-1 and ß-catenin compared to PTC-1 and KTC-1 cell lines. Furthermore, the overexpression of ß-catenin resulted in reduced binding of LEF-1 to NIF promotion but concurrently increased the expression of NIS. The downregulation of NIS markedly enhanced the expression of ALDH1A1, CD133, OCT4, Nanog, SOX2, and EpCam-all of which are targets within the Wnt/ß-catenin signaling pathway. Conversely, the upregulation of NIS suppressed the expression of these proteins. Moreover, cells treated with ß-catenin activators demonstrated an increased capability to form more spheroids and displayed heightened aggressiveness. Conversely, the NIS overexpression (OE) group exhibited suppressed abilities in invasion and colony formation. Conclusion: Thyroid cancer cells exhibit diminished expression of NIS, and the invasion and maintenance of stem cells in thyroid cancer cells were hindered by NIS OE through the inhibition of the ß-catenin/LEF-1 pathway. Further research is warranted to comprehensively assess this outcome, which holds promise as a potential targeted treatment for thyroid cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...