Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107373, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653149

RESUMO

The escalating prevalence of Alzheimer's disease (AD) has prompted extensive research into potential therapeutic interventions, with a specific focus on molecular targets such as amyloid beta (Aß) and tau protein aggregation. In this study, a series of α-ketoamide derivatives was synthesized from ß,γ-unsaturated α-keto thioesters, achieving high purity and good yield. Thioflavin T based Aß aggregation assay identified four promising compounds (BD19, BD23, BD24, and BD27) that demonstrated significant inhibitory effects on Aß aggregation. BD23, selected for its better solubility (0.045 ± 0.0012 mg/ml), was further subjected to in vitro Parallel Artificial Membrane Permeability Assay to determine the Blood-Brain-Barrier permeability and emerged as BBB permeable with permeability rate (Pe) of 10.66 ± 8.11 × 10-6 cm/s. In addition to its Aß inhibitory properties, BD23 exhibited significant inhibition of heparin-induced tau aggregation and demonstrated non-toxicity in SHSY5Y cell lines. Subsequent in vivo assays were conducted, administering compound BD23 to an Aß induced mouse model of AD at various doses (1, 2, & 5 mg/kg). The results revealed a noteworthy enhancement in cognitive functions, particularly when BD23 was administered at a dosage of 5 mg/kg, comparable to the effects observed with the standard dose of Donepezil (DNP). In silico investigations, including molecular docking, molecular dynamics simulations, and Density Functional Theory calculations provided insights into BD23's interactions with the targets and electronic properties. These analyses contribute to the understanding of the therapeutic potential of the lead compounds BD23 which further pave the way for further exploration of its therapeutic potential in the context of AD.

2.
Neural Regen Res ; 19(11): 2343-2344, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526266
3.
Prog Neurobiol ; 235: 102585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367747

RESUMO

Alzheimer's disease (AD) is a multifactorial disorder driven by abnormal amyloid ß-peptide (Aß) levels. In this study, we investigated the role of presenilin-like signal peptide peptidase-like 2b (SPPL2b) in AD pathophysiology and its potential as a druggable target within the Aß cascade. Exogenous Aß42 influenced SPPL2b expression in human cell lines and acute mouse brain slices. SPPL2b and its AD-related substrate BRI2 were evaluated in the brains of AppNL-G-F knock-in AD mice and human postmortem AD brains. An early high cortical expression of SPPL2b was observed, followed by a downregulation in late AD pathology in AppNL-G-F mice, correlating with synaptic loss. To understand the consequences of pathophysiological SPPL2b dysregulation, we found that SPPL2b overexpression significantly increased APP cleavage, while genetic deletion reduced APP cleavage and Aß production. Notably, postmortem AD brains showed higher levels of SPPL2b's BRI2 substrate compared to healthy control samples. These results strongly support the involvement of SPPL2b in AD pathology. The early Aß-induced upregulation of SPPL2b may enhance Aß production in a vicious cycle, further aggravating Aß pathology. Therefore, SPPL2b emerges as a potential anti-Aß drug target.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças
4.
Nat Commun ; 15(1): 965, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302480

RESUMO

Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-ß peptide (Aß) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aß42 fibril surface, consisting of three C-terminal ß-strands and particularly the solvent-exposed ß-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aß42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.


Assuntos
Doença de Alzheimer , Amiloide , Humanos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Domínios Proteicos , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo
5.
Front Med (Lausanne) ; 10: 1246881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020081

RESUMO

Background: Personalized dosimetry for Lu-177-PSMA treatment requires multiple-time-point SPECT/CT scans to calculate time-integrated activity (TIA). This study evaluates two-time-point (TTP) methods for TIA calculation for kidneys and tumors. Methods: A total of 18 patients treated with 3.7-7.4 GBq Lu-177 PSMA-617 were analyzed retrospectively, including 18 sets of left and right kidneys, as well as 45 tumors. Four quantitative SPECT/CT (4TP) were acquired at 2 h, 20 h, 40 h, 60 h (n = 11), or 200 h (n = 7) after treatment, and they were fit bi-exponentially as reference. The TTP method was fitted by a mono-exponential washout function using two selected imaging time points for kidneys. For tumors, one uptake and one washout phase were modeled, assuming linear (type I) and same (type II) uptake phase between 0 h to the first time point and mono-exponential washout thereafter. Two single-time-point (STP) methods were also implemented for comparison. TIA calculated by TTP and STP methods were compared with reference to the 4TP TIA. Results: For the kidneys, the TTP methods using 20 h-60 h and 40 h-200 h had smaller mean absolute errors of 8.05 ± 6.05% and 4.95 ± 3.98%, respectively, as compared to other combinations of time points and STP methods. For tumors, the type I and type II TTP methods using 20h-60 h and 40-200 h had smaller mean absolute errors of 6.14 ± 5.19% and 12.22 ± 4.44%, and 8.31 ± 7.16% and 4.48 ± 7.10%, respectively, as compared to other TTP and STP methods. Conclusion: The TTP methods based on later imaging time demonstrated fewer errors than the STP methods in kidney and tumor TIA. Imaging at 20 h-60 h and 40 h-200 h could simplify the dosimetry procedures with fewer TIA estimation errors.

6.
Exp Neurol ; 369: 114545, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37726047

RESUMO

Alzheimer's disease (AD) is characterized at an early stage by memory alterations that worsen during the development of the disease. Several clinical trials in phase 3 have failed despite being able to counteract classical AD-related alterations, possibly because of the lack of recovery of the regular neuronal network activity essential for memory including low gamma oscillations (γ-Osc). Nowadays, Levetiracetam (LEV), an SV2A modulator approved for epilepsy, is being used in trials with AD patients without further support for neurophysiological relevant effects on restoring the normal function of hippocampal neuronal network activity. Using concomitant recordings of local field potential γ-Osc and patch-clamp recordings of fast-spiking interneurons (FS-IN) on hippocampal slices of WT and AppNL-G-F AD animals, we found that LEV restores the power and rhythmicity of γ-Osc previously reduced by acute application of amyloid-ß on WT hippocampal slices, this effect is accompanied by the recovery of the synchronicity in the firing of FS-IN. In addition, we found that LEV counteracts the hippocampal γ-Osc alterations in the early prodromal stage of the disease in AppNL-G-F mice by recovering the rhythmicity of γ-Osc and the synchronicity in the firing of FS-IN. Altogether the results show that the precise modulation of neuronal circuits with LEV is a promising strategy to counteract early-stage alterations in hippocampal activity by modulating FS-IN in a memory-relevant neuronal network state like γ-Osc.

7.
Clin Nucl Med ; 48(10): 847-852, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418288

RESUMO

PURPOSE: We have developed a new pharmaceutical, ibandronic acid (IBA), and preliminarily demonstrated that it is an efficient bisphosphonate for the diagnosis and treatment of bone metastases. This study aims to examine the biodistribution and internal dosimetry of the diagnostic 68 Ga-DOTA-IBA in patients. PATIENTS AND METHODS: 68 Ga-DOTA-IBA was intravenously injected based on 1.81-2.57 MBq/Kg into 8 patients with bone metastases. Each patient underwent 4 sequential static whole-body PET scans at 0.1, 0.45, 0.8, and 1.8 hours after injection. The acquisition time for each scan was 20 minutes with 10 bed positions. Image registrations and volume of interest delineation were first performed on Hermes, whereas percentage injected activity (%IA), absorbed dose, and effective dose were measured for source organs, using OLINDA/EXM v2.0. Dosimetrics for the bladder was based on a bladder voiding model. RESULTS: No adverse effects were observed on all patients. After the injection, 68 Ga-DOTA-IBA rapidly accumulated in bone metastases and cleared from nonbone tissues, as indicated by visual analysis and %IA measured on the sequential scans. High activity uptake was presented in the expected target organs, that is, bone, red marrow, and the drug-excretion organs such as kidneys and bladder. The mean total body effective dose is 0.022 ± 0.002 mSv/MBq. CONCLUSIONS: 68 Ga-DOTA-IBA has high bone affinity and is promising in the diagnosis of bone metastases. Dosimetric results show that the absorbed doses for critical organs and total body are within the safety limit and with high bone retention. It also has the potential to be used in 177 Lu-therapy as a theranostic pair.


Assuntos
Neoplasias Ósseas , Tomografia por Emissão de Pósitrons , Humanos , Ácido Ibandrônico , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Radiometria , Neoplasias Ósseas/diagnóstico por imagem
8.
Small ; 19(46): e2304031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455347

RESUMO

Amyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-ß peptide (Aß) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aß capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aß forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.


Assuntos
Fibroínas , Aranhas , Humanos , Animais , Seda/química , Fibroínas/química , Polimerização , Amiloide , Peptídeos beta-Amiloides/metabolismo , Aranhas/metabolismo
9.
Biology (Basel) ; 12(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37372090

RESUMO

BACKGROUND: The endocannabinoid system (ECS) and associated lipid transmitter-based signaling systems play an important role in modulating brain neuroinflammation. ECS is affected in neurodegenerative disorders, such as Alzheimer's disease (AD). Here we have evaluated the non-psychotropic endocannabinoid receptor type 2 (CB2) and lysophosphatidylinositol G-protein-coupled receptor 55 (GPR55) localization and expression during Aß-pathology progression. METHODS: Hippocampal gene expression of CB2 and GPR55 was explored by qPCR analysis, and brain distribution was evaluated by immunofluorescence in the wild type (WT) and APP knock-in AppNL-G-F AD mouse model. Furthermore, the effects of Aß42 on CB2 and GPR55 expression were assessed in primary cell cultures. RESULTS: CB2 and GPR55 mRNA levels were significantly upregulated in AppNL-G-F mice at 6 and 12 months of age, compared to WT. CB2 was highly expressed in the microglia and astrocytes surrounding the Aß plaques. Differently, GPR55 staining was mainly detected in neurons and microglia but not in astrocytes. In vitro, Aß42 treatment enhanced CB2 receptor expression mainly in astrocytes and microglia cells, whereas GPR55 expression was enhanced primarily in neurons. CONCLUSIONS: These data show that Aß pathology progression, particularly Aß42, plays a crucial role in increasing the expression of CB2 and GPR55 receptors, supporting CB2 and GPR55 implications in AD.

10.
Commun Biol ; 6(1): 497, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156997

RESUMO

ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.


Assuntos
Amiloide , Agregados Proteicos , Amiloide/metabolismo , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Proteínas Amiloidogênicas , Interações Hidrofóbicas e Hidrofílicas
11.
Protein Sci ; 32(6): e4645, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37096906

RESUMO

The BRICHOS protein superfamily is a diverse group of proteins associated with a wide variety of human diseases, including respiratory distress, COVID-19, dementia, and cancer. A key characteristic of these proteins-besides their BRICHOS domain present in the ER lumen/extracellular part-is that they harbor an aggregation-prone region, which the BRICHOS domain is proposed to chaperone during biosynthesis. All so far studied BRICHOS domains modulate the aggregation pathway of various amyloid-forming substrates, but not all of them can keep denaturing proteins in a folding-competent state, in a similar manner as small heat shock proteins. Current evidence suggests that the ability to interfere with the aggregation pathways of substrates with entirely different end-point structures is dictated by BRICHOS quaternary structure as well as specific surface motifs. This review aims to provide an overview of the BRICHOS protein family and a perspective of the diverse molecular chaperone-like functions of various BRICHOS domains in relation to their structure and conformational plasticity. Furthermore, we speculate about the physiological implication of the diverse molecular chaperone functions and discuss the possibility to use the BRICHOS domain as a blood-brain barrier permeable molecular chaperone treatment of protein aggregation disorders.


Assuntos
COVID-19 , Humanos , Dobramento de Proteína , Amiloide/química , Chaperonas Moleculares/química , Proteínas Amiloidogênicas
12.
Nano Lett ; 23(12): 5836-5841, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37084706

RESUMO

Many protein condensates can convert to fibrillar aggregates, but the underlying mechanisms are unclear. Liquid-liquid phase separation (LLPS) of spider silk proteins, spidroins, suggests a regulatory switch between both states. Here, we combine microscopy and native mass spectrometry to investigate the influence of protein sequence, ions, and regulatory domains on spidroin LLPS. We find that salting out-effects drive LLPS via low-affinity stickers in the repeat domains. Interestingly, conditions that enable LLPS simultaneously cause dissociation of the dimeric C-terminal domain (CTD), priming it for aggregation. Since the CTD enhances LLPS of spidroins but is also required for their conversion into amyloid-like fibers, we expand the stickers and spacers-model of phase separation with the concept of folded domains as conditional stickers that represent regulatory units.


Assuntos
Fibroínas , Seda , Seda/química , Fibroínas/química , Proteínas de Artrópodes , Sequência de Aminoácidos
13.
Eur J Nucl Med Mol Imaging ; 50(8): 2319-2330, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36877236

RESUMO

PURPOSE: Respiration and body movement induce misregistration between static [99mTc]Tc-MAA SPECT and CT, causing lung shunting fraction (LSF) and tumor-to-normal liver ratio (TNR) errors for 90Y radioembolization planning. We aim to alleviate the misregistration between [99mTc]Tc-MAA SPECT and CT using two registration schemes on simulation and clinical data. METHODS: In the simulation study, 70 XCAT phantoms were modeled. The SIMIND Monte Carlo program and OS-EM algorithm were used for projection generation and reconstruction, respectively. Low-dose CT (LDCT) at end-inspiration was simulated for attenuation correction (AC), lungs and liver segmentation, while contrast-enhanced CT (CECT) was simulated for tumor and perfused liver segmentation. In the clinical study, 16 patient data including [99mTc]Tc-MAA SPECT/LDCT and CECT with observed SPECT and CT mismatch were analyzed. Two liver-based registration schemes were studied: SPECT registered to LDCT/CECT and vice versa. Mean count density (MCD) of different volumes-of-interest (VOIs), normalized mutual information (NMI), LSF, TNR, and maximum injected activity (MIA) based on the partition model before and after registration were compared. Wilcoxon signed-rank test was performed. RESULTS: In the simulation study, compared to before registration, registrations significantly reduced estimation errors of MCD of all VOIs, LSF (Scheme 1: - 100.28%, Scheme 2: - 101.59%), and TNR (Scheme 1: - 7.00%, Scheme 2: - 5.67%), as well as MIA (Scheme 1: - 3.22%, Scheme 2: - 2.40%). In the clinical study, Scheme 1 reduced 33.68% LSF and increased 14.75% TNR, while Scheme 2 reduced 38.88% LSF and increased 6.28% TNR compared to before registration. One patient may change from 90Y radioembolization untreatable to treatable and other patients may change the MIA up to 25% after registration. NMI between SPECT and CT was significantly increased after registrations in both studies. CONCLUSION: Registration between static [99mTc]Tc-MAA SPECT and corresponding CTs is feasible to reduce their spatial mismatch and improve dosimetric estimation. The improvement of LSF is larger than TNR. Our method can potentially improve patient selection and personalized treatment planning for liver radioembolization.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Embolização Terapêutica/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Agregado de Albumina Marcado com Tecnécio Tc 99m , Radioisótopos de Ítrio/uso terapêutico , Microesferas , Estudos Retrospectivos
14.
Sci Rep ; 13(1): 4020, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899031

RESUMO

Partition model (PM) for Y-90 microsphere radioembolization is limited in providing 3D dosimetrics. Voxel-S-Values (VSV) method has good agreement with Monte Carlo (MC) simulations for 3D absorbed dose conversion. We propose a new VSV method and compare its performance along with PM, MC and other VSV methods for Y-90 RE treatment planning based on Tc-99m MAA SPECT/CT. Twenty Tc-99m-MAA SPECT/CT patient data are retrospectively analyzed. Seven VSV methods are implemented: (1) local energy deposition; (2) liver kernel; (3) liver kernel and lung kernel; (4) liver kernel with density correction (LiKD); (5) liver kernel with center voxel scaling (LiCK); (6) liver kernel and lung kernel with density correction (LiLuKD); (7) proposed liver kernel with center voxel scaling and lung kernel with density correction (LiCKLuKD). Mean absorbed dose and maximum injected activity (MIA) obtained by PM and VSV are evaluated against MC results, and 3D dosimetrics generated by VSV are compared with MC. LiKD, LiCK, LiLuKD and LiCKLuKD have the smallest deviation in normal liver and tumors. LiLuKD and LiCKLuKD have the best performance in lungs. MIAs are similar by all methods. LiCKLuKD could provide MIA consistent with PM, and precise 3D dosimetrics for Y-90 RE treatment planning.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Radioisótopos de Ítrio/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Estudos Retrospectivos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Embolização Terapêutica/métodos , Tomografia Computadorizada de Emissão de Fóton Único
15.
PNAS Nexus ; 2(2): pgac303, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36743470

RESUMO

How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.

16.
Z Med Phys ; 33(1): 35-45, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535831

RESUMO

PURPOSE: The absorbed dose estimation from Voxel-S-Value (VSV) method in heterogeneous media is suboptimal as VSVs are calculated in homogeneous media. The aim of this study is to develop and evaluate new VSV methods in order to enhance the accuracy of Y-90 microspheres absorbed dose estimation in liver, lungs, tumors and lung-liver interface regions. METHODS: Ten patients with Y-90 microspheres SPECT/CT and PET/CT data, six of whom had additional Tc-99m-macroaggregated albumin SPECT/CT data, were analyzed from the Deep Blue Data Repository. Seven existing VSV methods along with three newly proposed VSV methods were evaluated: liver and lung kernel with center voxel scaling (LiLuCK), liver kernel with density correction and lung kernel with center voxel scaling (LiKDLuCK), liver kernel with center voxel scaling and lung kernel with density correction (LiCKLuKD). Monte Carlo (MC) results were regarded as the gold standard. Absolute absorbed dose errors (%AADE) of these methods for the liver, lungs, tumors, upper liver, and lower lungs were assessed. RESULTS: Liver and tumor's median %AADE of all methods were <3% for three types of imaging data. In the lungs, however, three recently proposed VSV methods provided median %AADEs of less than 7%, whereas the differences exceeded 20% for existing methods that did not use a lung kernel. LiCKLuKD could achieve median %AADE <2% in the liver, upper liver and tumors, and median %AADE <7% in the lungs and lower lungs in three types of data. CONCLUSION: All methods are consistent with MC in the liver and tumors. Methods with tissue-specific kernel and effective correction achieve smaller errors in lungs. LiCKLuKD has comparable results with MC in absorbed dose estimation of Y-90 radioembolization for all target regions.


Assuntos
Neoplasias Hepáticas , Radioisótopos de Ítrio , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Microesferas , Radiometria/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Tomografia Computadorizada de Emissão de Fóton Único
17.
Z Med Phys ; 33(1): 54-69, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35644776

RESUMO

BACKGROUND: Quantitative activity estimation is essential in nuclear medicine imaging. Mismatch between SPECT and CT images at the same imaging time point due to patient movement degrades accuracy in both diagnostic studies and target radionuclide therapy dosimetry. This work aims to study the mismatch effects between CT and SPECT data on attenuation correction (AC), volume-of-interest (VOI) delineation, and registration for activity estimation. METHODS: Nine 4D XCAT phantoms were generated at 1, 24, and 144 h post In-111 Zevalin injection, varying in activity distributions, body sizes, and organ sizes. Realistic noisy SPECT projections were generated by an analytical projector and reconstructed with a quantitative OS-EM method. CT images were shifted, corresponding to SPECT images at each imaging time point, from -5 to 5 voxels and also according to a clinical reference. The effect of mismatched AC maps was evaluated using mismatched CT images for AC in SPECT reconstruction while VOIs were mapped out from matched CTs. The effect of mismatched VOI drawings was evaluated using mismatched CTs to map out target organs while using matched CTs for AC. The effect of mismatched CT images for registration was evaluated by registering sequential mismatched CTs to align corresponding SPECT images, with no AC and VOI mismatch. Bi-exponential curve fitting was performed to obtain time-integrated activity (TIA). Organ activity errors (%OAE) and TIA errors (%TIAE) were calculated. RESULTS: According to the clinical reference, %OAE was larger for organs near ribs for AC effect. For VOI effect, %OAE was larger for small and low uptake organs. For registration effect, %TIAE were larger when mismatch existed in more numbers of SPECT/CT images, while no substantial difference was observed when using mismatched CT at different imaging time points as registration reference. %TIAE was highest for VOI, followed by registration and AC, e.g., 20.62%±8.61%, 9.33%±4.66% and 1.13%±0.90% respectively for kidneys. CONCLUSIONS: The mismatch between CT and SPECT images poses a significant impact on the accuracy of quantitative activity estimation, attributed particularly from VOI delineation errors. It is recommended to perform registration between emission and transmission images at the same time point to ensure diagnostic and dosimetric accuracy.


Assuntos
Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Radiometria , Imagens de Fantasmas , Simulação por Computador , Processamento de Imagem Assistida por Computador
18.
Mol Ther ; 31(2): 487-502, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982621

RESUMO

Attempts to treat Alzheimer's disease with immunotherapy against the ß-amyloid (Aß) peptide or with enzyme inhibitors to reduce Aß production have not yet resulted in effective treatment, suggesting that alternative strategies may be useful. Here we explore the possibility of targeting the toxicity associated with Aß aggregation by using the recombinant human (rh) Bri2 BRICHOS chaperone domain, mutated to act selectively against Aß42 oligomer generation and neurotoxicity in vitro. We find that treatment of Aß precursor protein (App) knockin mice with repeated intravenous injections of rh Bri2 BRICHOS R221E, from an age close to the start of development of Alzheimer's disease-like pathology, improves recognition and working memory, as assessed using novel object recognition and Y maze tests, and reduces Aß plaque deposition and activation of astrocytes and microglia. When treatment was started about 4 months after Alzheimer's disease-like pathology was already established, memory improvement was not detected, but Aß plaque deposition and gliosis were reduced, and substantially reduced astrocyte accumulation in the vicinity of Aß plaques was observed. The degrees of treatment effects observed in the App knockin mouse models apparently correlate with the amounts of Bri2 BRICHOS detected in brain sections after the end of the treatment period.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Placa Amiloide/tratamento farmacológico , Placa Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Precursor de Proteína beta-Amiloide/metabolismo
19.
RSC Chem Biol ; 3(11): 1342-1358, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349220

RESUMO

Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pK a value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations.

20.
Prog Neurobiol ; 219: 102366, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273719

RESUMO

The pro-inflammatory and highly amyloidogenic protein S100A9 is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases leading to cognitive impairment. Molecular chaperone activity of Bri2 BRICHOS has been demonstrated against a range of amyloidogenic polypeptides. Using a combination of thioflavin T fluorescence kinetic assay, atomic force microscopy and immuno electron microscopy we show here that recombinant Bri2 BRICHOS effectively inhibits S100A9 amyloid growth by capping amyloid fibrils. Using ex-vivo neuronal network electrophysiology in mouse brain slices we also show that both native S100A9 and amyloids of S100A9 disrupt cognition-relevant gamma oscillation power and rhythmicity in hippocampal area CA3 in a time- and protein conformation-dependent manner. Both effects were associated with Toll-like receptor 4 (TLR4) activation and were not observed upon TLR4 blockade. Importantly, S100A9 that had co-aggregated with Bri2 BRICHOS did not elicit degradation of gamma oscillations. Taken together, this work provides insights on the potential influence of S100A9 on cognitive dysfunction in Alzheimer's disease (AD) via gamma oscillation impairment from experimentally-induced gamma oscillations, and further highlights Bri2 BRICHOS as a chaperone against detrimental effects of amyloid self-assembly.


Assuntos
Doença de Alzheimer , Receptor 4 Toll-Like , Animais , Camundongos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Calgranulina B/metabolismo , Receptor 4 Toll-Like/metabolismo , Região CA3 Hipocampal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...