Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Water Res ; 258: 121776, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772317

RESUMO

The induction of viable but nonculturable (VBNC) bacteria with cellular integrity and low metabolic activity by chemical disinfection causes a significant underestimation of potential microbiological risks in drinking water. Herein, a physical Co3O4 nanowire-assisted electroporation (NW-EP) was developed to induce cell damage via the locally enhanced electric field over nanowire tips, potentially achieving effective inhibition of VBNC cells as compared with chemical chlorination (Cl2). NW-EP enabled over 5-log removal of culturable cell for various G+/G- bacteria under voltage of 1.0 V and hydraulic retention time of 180 s, and with ∼3-6 times lower energy consumption than Cl2. NW-EP also achieved much higher removals (∼84.6 % and 89.5 %) of viable Bacillus cereus (G+) and Acinetobacter schindleri (G-) via generating unrecoverable pores on cell wall and reversible/irreversible pores on cell membrane than Cl2 (∼28.6 % and 41.1 %) with insignificant cell damage. The residual VBNC bacteria with cell wall damage and membrane pore resealing exhibited gradual inactivation by osmotic stress, leading to ∼99.8 % cell inactivation after 24 h storage (∼59.4 % for Cl2). Characterizations of cell membrane integrity and cell morphology revealed that osmotic stress promoted cell membrane damage for the gradual inactivation of VBNC cells during storage. The excellent adaptability of NW-EP for controlling VBNC cells in DI, tap and lake waters suggested its promising application potentials for drinking water, such as design of an external device on household taps.

2.
Inorg Chem ; 63(16): 7430-7441, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38605566

RESUMO

Most nonoxide catalysts based on transition metal elements will inevitably change their primitive phases under anodic oxidation conditions in alkaline media. Establishing a relationship between the bulk phase and surface evolution is imperative to reveal the intrinsic catalytic active sites. In this work, it is demonstrated that the introduction of Fe facilitates the phase transition of orthorhombic CoSe2 into its cubic counterpart and then accelerates the Co-Fe hydroxide layer generation on the surface during electrocatalytic oxygen evolution reaction (OER). As a result, the Fe-doped cubic CoSe2 catalyst exhibits a significantly enhanced activity with a considerable overpotential decrease of 79.9 and 66.9 mV to deliver 10 mA·cm-2 accompanied by a Tafel slope of 48.0 mV·dec-1 toward OER when compared to orthorhombic CoSe2 and Fe-doped orthorhombic CoSe2, respectively. Density functional theory (DFT) calculations reveal that the introduction of Fe on the surface hydroxide layers will tune electron density around Co atoms and raise the d-band center. These findings will provide deep insights into the surface reconstitution of the OER electrocatalysts based on transition metal elements.

3.
World J Gastroenterol ; 30(12): 1727-1738, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38617742

RESUMO

BACKGROUND: Sarcopenia may be associated with hepatocellular carcinoma (HCC) following hepatectomy. But traditional single clinical variables are still insufficient to predict recurrence. We still lack effective prediction models for recent recurrence (time to recurrence < 2 years) after hepatectomy for HCC. AIM: To establish an interventable prediction model to estimate recurrence-free survival (RFS) after hepatectomy for HCC based on sarcopenia. METHODS: We retrospectively analyzed 283 hepatitis B-related HCC patients who underwent curative hepatectomy for the first time, and the skeletal muscle index at the third lumbar spine was measured by preoperative computed tomography. 94 of these patients were enrolled for external validation. Cox multivariate analysis was per-formed to identify the risk factors of postoperative recurrence in training cohort. A nomogram model was developed to predict the RFS of HCC patients, and its predictive performance was validated. The predictive efficacy of this model was evaluated using the receiver operating characteristic curve. RESULTS: Multivariate analysis showed that sarcopenia [Hazard ratio(HR) = 1.767, 95%CI: 1.166-2.678, P < 0.05], alpha-fetoprotein ≥ 40 ng/mL (HR = 1.984, 95%CI: 1.307-3.011, P < 0.05), the maximum diameter of tumor > 5 cm (HR = 2.222, 95%CI: 1.285-3.842, P < 0.05), and hepatitis B virus DNA level ≥ 2000 IU/mL (HR = 2.1, 95%CI: 1.407-3.135, P < 0.05) were independent risk factors associated with postoperative recurrence of HCC. Based on the sarcopenia to assess the RFS model of hepatectomy with hepatitis B-related liver cancer disease (SAMD) was established combined with other the above risk factors. The area under the curve of the SAMD model was 0.782 (95%CI: 0.705-0.858) in the training cohort (sensitivity 81%, specificity 63%) and 0.773 (95%CI: 0.707-0.838) in the validation cohort. Besides, a SAMD score ≥ 110 was better to distinguish the high-risk group of postoperative recurrence of HCC. CONCLUSION: Sarcopenia is associated with recent recurrence after hepatectomy for hepatitis B-related HCC. A nutritional status-based prediction model is first established for postoperative recurrence of hepatitis B-related HCC, which is superior to other models and contributes to prognosis prediction.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Sarcopenia , Humanos , Carcinoma Hepatocelular/cirurgia , Sarcopenia/complicações , Sarcopenia/diagnóstico por imagem , Hepatectomia/efeitos adversos , Estudos Retrospectivos , Neoplasias Hepáticas/cirurgia , Hepatite B/complicações
4.
Front Oncol ; 14: 1367907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665944

RESUMO

Purpose: To assess the utility of fat fraction quantification using quantitative multi-echo Dixon for evaluating tumor proliferation and microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Methods: A total of 66 patients with resection and histopathologic confirmed HCC were enrolled. Preoperative MRI with proton density fat fraction and R2* mapping was analyzed. Intratumoral and peritumoral regions were delineated with manually placed regions of interest at the maximum level of intratumoral fat. Correlation analysis explored the relationship between fat fraction and Ki67. The fat fraction and R2* were compared between high Ki67(>30%) and low Ki67 nodules, and between MVI negative and positive groups. Receiver operating characteristic (ROC) analysis was used for further analysis if statistically different. Results: The median fat fraction of tumor (tFF) was higher than peritumor liver (5.24% vs 3.51%, P=0.012). The tFF was negatively correlated with Ki67 (r=-0.306, P=0.012), and tFF of high Ki67 nodules was lower than that of low Ki67 nodules (2.10% vs 4.90%, P=0.001). The tFF was a good estimator for low proliferation nodules (AUC 0.747, cut-off 3.39%, sensitivity 0.778, specificity 0.692). There was no significant difference in tFF and R2* between MVI positive and negative nodules (3.00% vs 2.90%, P=0.784; 55.80s-1 vs 49.15s-1, P=0.227). Conclusion: We infer that intratumor fat can be identified in HCC and fat fraction quantification using quantitative multi-echo Dixon can distinguish low proliferative HCCs.

5.
Angew Chem Int Ed Engl ; 63(22): e202403668, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38462892

RESUMO

The electrolyte chemistry is crucially important for promoting the practical application of lithium metal batteries (LMBs). Here, we demonstrate for the first time that 1,3-dimethylimidazolium dimethyl phosphate (DIDP) and trimethylsilyl trifluoroacetate (TMSF) can undergo in situ transesterification in carbonate electrolyte to generate dimethyl trimethylsilyl phosphate (DTMSP) and 1,3-dimethylimidazolium trifluoroacetate (DITFA) as multifunctional additives for LMBs. H2O and HF can be removed by the Si-O group in DTMSP to improve the moisture resistance of electrolyte and the stability of cathode. Furthermore, the dissolution of lithium nitrate (LiNO3) in carbonate electrolyte can be promoted by the trifluoroacetate anion (TFA-) in DITFA, thereby optimizing the solvation structure and transport kinetics of Li+. More importantly, both DTMSP and DITFA tend to preferential redox decomposition due to the low lowest unoccupied molecular orbital (LUMO) and high highest occupied molecular orbital (HOMO). Consequently, a thin and robust layer rich in P/N/Si on the cathode and an inorganic-rich layer (e.g. Li3N/Li3P) on the anode can be constructed and superior electrochemical performances are achieved. This artificial transesterification strategy to introduce favorable additives paves an efficient and ingenious route to high-performance electrolyte for LMBs.

6.
Nanomaterials (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535704

RESUMO

The 8-16-4 graphyne, a recently identified two-dimensional carbon allotrope, exhibits distinctive mechanical and electrical properties, making it a candidate material for flexible electronic applications. This study endeavors to enhance our comprehension of the fracture behavior and mechanical properties of 8-16-4 graphyne. The mechanical properties of 8-16-4 graphyne were evaluated through molecular dynamics simulations, examining the impact of boundary conditions, temperature, and strain rate, as well as the coupled interactions between temperature, vacancy defects, and microcracks. The findings reveal that 8-16-4 graphyne undergoes fracture via the cleavage of ethylene bonds at a critical strain value of approximately 0.29. Variations in boundary conditions and strain rate influence the fidelity of tensile simulation outcomes. Temperature, vacancy concentration, and the presence of microcracks markedly affect the mechanical properties of 8-16-4 graphyne. In contrast to other carbon allotropes, 8-16-4 graphyne exhibits a diminished sensitivity to vacancy defects in its mechanical performance. However, carbon vacancies at particular sites are more prone to initiating cracks. Furthermore, pre-existing microcracks within the material can potentially alter the fracture mode.

7.
Nat Commun ; 15(1): 2197, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467628

RESUMO

The superconductivity in systems containing dispersionless (flat) bands is seemingly paradoxical, as traditional Bardeen-Cooper-Schrieffer theory requires an infinite enhancement of the carrier masses. However, the combination of flat and steep (dispersive) bands within the multiple band scenario might boost superconducting responses, potentially explaining high-temperature superconductivity in cuprates and metal hydrides. Here, we report on the magnetic penetration depths, the upper critical field, and the specific heat measurements, together with the first-principles calculations for the Mo5Si3-xPx superconducting family. The band structure features a flat band that gradually approaches the Fermi level as a function of phosphorus doping x, reaching the Fermi level at x ≃ 1.3. This leads to an abrupt change in nearly all superconducting quantities. The superfluid density data placed on the 'Uemura plot' results in two separated branches, thus indicating that the emergence of a flat band enhances correlations between conducting electrons.

8.
Angew Chem Int Ed Engl ; 63(14): e202319662, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366812

RESUMO

Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.

9.
Angew Chem Int Ed Engl ; 63(13): e202314876, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305641

RESUMO

The carbonate electrolyte chemistry is a primary determinant for the development of high-voltage lithium metal batteries (LMBs). Unfortunately, their implementation is greatly plagued by sluggish electrode interfacial dynamics and insufficient electrolyte thermodynamic stability. Herein, lithium trifluoroacetate-lithium nitrate (LiTFA-LiNO3 ) dual-salt additive-reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high-voltage LMBs. We reveal that 1) the in situ generated inorganic-rich electrode-electrolyte interphase (EEI) enables rapid interfacial dynamics, 2) TFA- preferentially interacts with moisture over PF6 - to strengthen the moisture tolerance of designed electrolyte, and 3) NO3 - is found to be noticeably enriched at the cathode interface on charging, thus constructing Li+ -enriched, solvent-coordinated, thermodynamically favorable electric double layer (EDL). The superior moisture tolerance of LTFAN and the thermodynamically stable EDL constructed at cathode interface play a decisive role in upgrading the compatibility of carbonate electrolyte with high-voltage cathode. The LMBs with LTFAN realize 4.3 V-NCM523/4.4 V-NCM622 superior cycling reversibility and excellent rate capability, which is the leading level of documented records for carbonate electrode.

10.
Sci Bull (Beijing) ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38423878

RESUMO

Rational carbonate electrolyte chemistry is critical for the development of high-voltage lithium metal batteries (LMBs). However, the implementation of traditional carbonate electrolyte is greatly hindered by the generation of an unstable electrode interphase and corrosive by-product (HF). Herein, we propose a triple-function eutectic solvent additive of N-methylacetamide (NmAc) with LiNO3 to enhance the stability and compatibility of carbonate electrolyte. Firstly, the addition of NmAc significantly improves the solubility of LiNO3 in carbonate electrolyte by forming an eutectic pair, which regulates the Li+ solvation structure and leads to dense and homogenous Li plating. Secondly, the hydrolysis of acidic PF5 is effectively alleviated due to the strong complexation of NmAc with PF5, thus reducing the generation of corrosive HF. In addition, the optimized cathode electrolyte interphase layer decreases the structural degradation and transition metal dissolution. Consequently, Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) cells with the designed electrolyte deliver superior long-term cycle reversibility and excellent rate capability. This study unveils the rationale for incorporating eutectic solvent additives within carbonate electrolytes, which significantly contribute to the advancement of their practical application for high-voltage LMBs.

11.
Aging (Albany NY) ; 16(3): 2123-2140, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38329418

RESUMO

BACKGROUND: Biomarkers and pathways associated with renal ischemia reperfusion injury (IRI) had not been well unveiled. This study was intended to investigate and summarize the regulatory networks for related hub genes. Besides, the immunological micro-environment features were evaluated and the correlations between immune cells and hub genes were also explored. METHODS: GSE98622 containing mouse samples with multiple IRI stages and controls was collected from the GEO database. Differentially expressed genes (DEGs) were recognized by the R package limma, and the GO and KEGG analyses were conducted by DAVID. Gene set variation analysis (GSVA) and weighted gene coexpression network analysis (WGCNA) had been implemented to uncover changed pathways and gene modules related to IRI. Besides the known pathways such as apoptosis pathway, metabolic pathway, and cell cycle pathways, some novel pathways were also discovered to be critical in IRI. A series of novel genes associated with IRI was also dug out. An IRI mouse model was constructed to validate the results. RESULTS: The well-known IRI marker genes (Kim1 and Lcn2) and novel hub genes (Hbegf, Serpine2, Apbb1ip, Trip13, Atf3, and Ncaph) had been proved by the quantitative real-time polymerase chain reaction (qRT-PCR). Thereafter, miRNAs targeted to the dysregulated genes were predicted and the miRNA-target network was constructed. Furthermore, the immune infiltration for these samples was predicted and the results showed that macrophages infiltrated to the injured kidney to affect the tissue repair or fibrosis. Hub genes were significantly positively or negatively correlated with the macrophage abundance indicating they played a crucial role in macrophage infiltration. CONCLUSIONS: Consequently, the pathways, hub genes, miRNAs, and the immune microenvironment may explain the mechanism of IRI and might be the potential targets for IRI treatments.


Assuntos
MicroRNAs , Serpina E2 , Animais , Camundongos , Ciclo Celular , Biologia Computacional , Rim , MicroRNAs/genética
12.
Org Lett ; 26(8): 1623-1628, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363721

RESUMO

An extremely concise, scalable, and stereoselective synthesis of a privileged chiral skeleton based on 2,2'-biindolyl and commercially available chiral building blocks has been developed. This novel skeleton allows for easy access to a range of bisphosphine ligands (decagram scale, up to 58% total yield, only three steps). The synthetic method is characterized by an efficient central-to-axial chirality transfer strategy. In particular, the superior performance of the ligands has been demonstrated in diverse reactions, including several asymmetric hydrogenations, asymmetric conjugate reductions, and cycloisomerization reactions, indicating a great potential for the application of the newly developed chiral backbones in further modifications and exploration of novel chiral ligands and catalysts.

13.
Org Lett ; 26(14): 2811-2816, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38227838

RESUMO

Herein we have developed a highly practical and efficient one-step coupling protocol for the synthesis of chiral spiro diphosphine ligands, especially for the oxa-spiro diphosphine ligands O-SDP, which showed excellent reactivity and diastereoselectivity in the asymmetric hydrogenation of a key intermediate of Sacubitril. It should be noted that the one-step coupling protocol could be operated on a kilogram scale, and the resulting ruthenium catalyst of O-SDP could hydrogenate the key intermediate of Sacubitril on an industrial scale.

14.
Zhongguo Gu Shang ; 37(1): 51-6, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38286451

RESUMO

OBJECTIVE: To observe the clinical efficacy of lesion removal, bone grafting, fusion, and external fixation in the treatment of late-stage wrist tuberculosis. METHODS: From October 2015 to May 2019, 25 patients with late-stage wrist tuberculosis were treated using lesion removal, bone grafting, fusion, and external fixation. Among these patients, there were 14 males and 11 females, aged from 40 to 74 years old, with an average age of (60.72±8.45) years old. The duration of the disease ranged from 5 to 24 months, with an average of (11.52±7.61) months. There were 11 cases of left wrist tuberculosis and 14 cases of right wrist tuberculosis, with 5 cases accompanied by sinus formation. Postoperative regular anti-tuberculosis treatment was continued. Visual analogue score (VAS), inflammatory indicators, Gartland-Werley wrist function score, and upper limb function score were observed before and after treatment. RESULTS: All 25 patients were followed up for ranging from 12 to 36 months with an average of (19.7±6.3) months. At the latest follow-up, all wounds were healed satisfactorily, and there was no recurrence of tuberculosis or infection. VAS at one week before operation and three months after operation were (5.16±1.14) score and (1.68±0.80) score respectively. One week before operation and three months after operation, erythrocyte sedimentation rate (ESR) was (44.20±20.56) mm·h-1 and (14.44±1.14) mm·h-1, and C-reactive protein (CRP) was (12.37±7.95) mg·L-1 and (4.3±3.37) mg·L-1. The differences in all three data sets were statistically significant (P<0.01). According to Gartland-Werley wrist function scoring, the scores at one week before operation and one year after operation were (21.32±3.44) and (14.96±1.37) respectively, showed a statistically significant difference (P<0.01). According to the upper limb function score (disabilities of the arm, shoulder, and hand, DASH), the score was (70.52±7.95) at one week before operation and(28.84±2.30) at one year after operation. The difference was statistically significant (P<0.01). At the latest follow-up, no patient had a recurrence of tuberculosis. CONCLUSION: The short-term clinical efficacy of treating wrist tuberculosis with lesion removal, bone grafting, fusion, and external fixation is satisfactory.


Assuntos
Fusão Vertebral , Tuberculose da Coluna Vertebral , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Tuberculose da Coluna Vertebral/cirurgia , Punho/cirurgia , Transplante Ósseo , Vértebras Torácicas/cirurgia , Vértebras Lombares , Resultado do Tratamento , Extremidade Superior , Estudos Retrospectivos
15.
Bioinspir Biomim ; 19(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194701

RESUMO

Modeling and control methods for stiffness-tunable soft robots (STSRs) have received less attention compared to standard soft robots. A major challenge in controlling STSRs is their infinite degrees of freedom, similar to standard soft robots. In this paper, demonstrate a novel STSR by combing a soft-rigid hybrid spine-mimicking actuator with a stiffness-tunable module. Additionally, we introduce a new kinematic and dynamic modeling methodology for the proposed STSR. Based on the STSR characteristics, we model it as a series of PRP segments, each composed of two prismatic joints(P) and one revolute joint(R). This method is simpler, more generalizable, and more computationally efficient than existing approaches. We also design a multi-input multi-output (MIMO) controller that directly adjusts the pressure of the STSR's three pneumatic chambers to precisely control its posture. Both the novel modeling methodology and MIMO control system are implemented and validated on the proposed STSR prototype.


Assuntos
Robótica , Robótica/métodos , Fenômenos Biomecânicos , Desenho de Equipamento , Postura
16.
Adv Mater ; 36(5): e2307091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37857473

RESUMO

The ever-growing demand for resources sustainability has promoted the recycle of spent lithium-ion batteries to a strategic position. Direct recycle outperforms either hydrometallurgical or pyrometallurgical approaches due to the high added value and facile treatment processes. However, the traditional direct recycling technologies are only applicable for Ni-poor/middle cathodes. Herein, spent Ni-rich LiNi0.8 Co0.1 Mn0.1 O2 (S-NCM) to performance-enhanced single-crystalline cathode materials is directly recycled using a simple but effective LiOH-NaCl molten salt. The evolution process of the Li-supplement and grain-recrystallization during regeneration is systematically investigated, and the successful recovery of the highly degraded microstructure is comprehensively proven, including significant elimination of Ni2+ and O vacancies. Beneficial from the favorable reconstructed single-crystalline particles, the regenerated NCM (R-NCM) represents remarkably enhanced structural stability, electrochemical activity, O2 and cracks suppression during charge/discharge, thus achieving the excellent performances in long-term cycling and high-rate tests. As a result, R-NCM maintains the 86.5% reversible capacity at 1 C after 200 cycles. Instructively, the present molten salt can be successfully applied for recycling spent NCMs with various Li and Ni compositions (e.g., LiNi0.5 Co0.2 Mn0.3 O2 ).

17.
Sensors (Basel) ; 23(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067779

RESUMO

Modern embedded systems have achieved relatively high processing power. They can be used for edge computing and computer vision, where data are collected and processed locally, without the need for network communication for decision-making and data analysis purposes. Face detection, face recognition, and pose detection algorithms can be executed with acceptable performance on embedded systems and are used for home security and monitoring. However, popular machine learning frameworks, such as MediaPipe, require relatively high usage of CPU while running, even when idle with no subject in the scene. Combined with the still present false detections, this wastes CPU time, elevates the power consumption and overall system temperature, and generates unnecessary data. In this study, a low-cost low-resolution infrared thermal sensor array was used to control the execution of MediaPipe's pose detection algorithm using single-board computers, which only runs when the thermal camera detects a possible subject in its field of view. A lightweight algorithm with several filtering layers was developed, which allowed the effective detection and isolation of a person in the thermal image. The resulting hybrid computer vision proved effective in reducing the average CPU workload, especially in environments with low activity, almost eliminating MediaPipe's false detections, and reaching up to 30% power saving in the best-case scenario.


Assuntos
Algoritmos , Carga de Trabalho , Humanos , Computadores , Aprendizado de Máquina
18.
ACS Nano ; 17(24): 25091-25100, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38054420

RESUMO

Electrochemical NO3- reduction reaction (NO3RR) is a promising technique for green NH3 synthesis. Tungsten oxide (WO3) has been regarded as an effective electrocatalyst for electrochemical NH3 synthesis. However, the weak adsorption and the sluggish hydrogenation of oxynitride intermediates (NOx, e.g., *NO3 and *NO2) over WO3 materials hinder the efficiency of converting NO3- to NH3. Herein, we design a heterostructure of tungsten nitride (WN) and WO3 (WN/WO3) nanosheets to optimize *NO3 and *NO2 adsorptions and facilitate *NO2 hydrogenations to achieve a highly efficient electrochemical NO3RR to produce NH3. Theoretical calculations predict that locally introducing WN into WO3 will shorten the distance between adjacent W atoms, resulting in *NO3 and *NO2 being strongly adsorbed on W active sites in the form of bidentate ligands instead of the relatively weak monodentate ligands. Furthermore, WN facilitates H2O dissociation to supply the requisite protons, which is beneficial for *NO2 hydrogenations. Inspired by theoretical prediction, WN/WO3 nanosheets are successfully fabricated through a high-temperature nitridation process. The transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption near-edge spectroscopy investigations confirm that the amorphous WN has been locally introduced in situ into WO3 nanosheets to form a composite heterostructure. The as-prepared WN/WO3 nanosheets exhibit a high Faraday efficiency of 88.9 ± 7.2% and an appreciable yield rate of 8.4 mg h-1 cm-2 toward NH3 production, which is much higher than that of individual WO3 and WN. The enhanced adsorption and hydrogenation behaviors of *NOx over WN/WO3 are characterized by in situ Fourier-transform infrared spectroscopy, consistent with the theoretical predictions. This work develops facile and effective heterostructure nanomaterials to tune the adsorption and hydrogenation of NOx for boosting the efficiency from NO3- to NH3.

19.
BMC Public Health ; 23(1): 2378, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037037

RESUMO

BACKGROUND: Evidence on the role of physical activity (PA) on healthcare utilization and expenditure is limited in China. We aimed to examine the association between the total physical activity (TPA) per week, healthcare service use and expenditure. METHODS: We extracted the data from China Health and Retirement Longitudinal Study (CHARLS) 2011, 2013, and 2015. Participants more than 50 years old who completed the follow-up for the three waves were enrolled. We converted the volume of vigorous physical activity (VPA) into an equivalent volume of moderate physical activity (MPA) and calculated the TPA per week for each participant. 12,927 of the 17,708 participants in CHARLS were included in our analysis. More than one-third of participants over 50 years old never participate in any moderate or intensity activity, and the median of self-reported moderate or intensity PA was about 525 (IQR 0-1680) MET-minutes per week in 2015. RESULTS: Compared to inactive subjects, the highest level of TPA was significantly related to the decreased risk number of inpatient visits (IRR: 0.58; 95% CI:0.50-0.67, p < 0.001), inpatient hospital days (IRR: 0.60; 95% CI: 0.42-0.84, p < 0.01), healthcare expenditure (IRR: 0.71; 95% CI: 0.65-0.79, p < 0.001) and catastrophic health expenditures (OR: 0.57; 95% CI: 0.45-0.72, p < 0.001) after adjusting for covariates. CONCLUSIONS: Engaging in moderate-to-vigorous PA may drive a potential decrease in healthcare utilization, healthcare expenditure and household financial risk with a dose-response relationship in China, and some possible policy implications in public health may be considered to promote exercise in the middle-aged and elderly to reduce the medical burden on individuals and healthcare systems.


Assuntos
Exercício Físico , Gastos em Saúde , Aceitação pelo Paciente de Cuidados de Saúde , Idoso , Humanos , Pessoa de Meia-Idade , China , Estudos Longitudinais , Aposentadoria , Saúde Pública
20.
Radiat Res ; 200(6): 531-537, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014555

RESUMO

Patients with hepatobiliary tumors who accept radiotherapy are at risk for radiation-induced liver fibrosis. MicroRNAs (miRNAs) have been implicated in the pathogenesis of radiation-induced liver damage and possess potential as novel biomarkers and therapeutic targets. However, the role of miR-146a-5p in radiation-induced liver fibrosis is less well understood. The current study was designed to evaluate the role of miR-146a-5p in radiation-induced liver fibrosis in mice and to investigate the possible mechanisms involved in miR-146a-5p-mediated effects. The experiments were performed on Institute of Cancer Research (ICR) mice which received fractionated radiation (30 Gy in 5 fractions) to the liver. The results show radiation could induce histopathological changes, liver dysfunction and fibrosis accompanied with decreased miR-146a-5p expression. miR-146a-5p agomir treatment resulted in recovery of liver function and reduced the amount of alpha-smooth muscle actin (α-SMA), collagen 1, protein tyrosine phosphatase receptor type A (PTPRA) and phosphorylated SRC in the livers of irradiated mice. Therefore, our study reveals that miR-146a-5p inhibits the progression of hepatic fibrosis after radiation treatment. And the beneficial role of miR-146a-5p may be relevant to PTPRA-SRC signaling pathway.


Assuntos
MicroRNAs , Humanos , Camundongos , Animais , MicroRNAs/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fibrose , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...