Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611767

RESUMO

As an azo dye, OG has toxic and harmful effects on ecosystems. Therefore, there is an urgent need to develop a green, environmentally friendly, and efficient catalyst to activate peroxymonosulfate (PMS) for the degradation of OG. In this study, the catalysts MIL-101(Fe) and NH2-MIL-101(Fe) were prepared using a solvothermal method to carry out degradation experiments. They were characterized by means of XRD, SEM, XPS, and FT-IR, and the results showed that the catalysts were successfully prepared. Then, a catalyst/PMS system was constructed, and the effects of different reaction systems, initial pH, temperature, catalyst dosing, PMS concentration, and the anion effect on the degradation of OG were investigated. Under specific conditions (100 mL OG solution with a concentration of 50 mg/L, pH = 7.3, temperature = 25 °C, 1 mL PMS solution with a concentration of 100 mmol/L, and a catalyst dosage of 0.02 g), the degradation of OG with MIL-101(Fe) was only 36.6% within 60 min; as a comparison, NH2-MIL-101(Fe) could reach up to 97.9%, with a reaction constant k value of 0.07245 min-1. The NH2-MIL-101 (Fe)/PMS reaction system was able to achieve efficient degradation of OG at different pH values (pH = 3~9). The degradation mechanism was analyzed using free-radical quenching tests. The free-radical quenching tests showed that SO4•-, •OH, and 1O2 were the main active species during the degradation of OG.

2.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175147

RESUMO

H1.6Mn1.6O4 lithium-ion screen adsorbents were synthesized by soft chemical synthesis and solid phase calcination and then applied to the recovery of metal Li and Co from waste cathode materials of a lithium cobalt oxide-based battery. The leaching experiments of cobalt and lithium from cathode materials by a citrate hydrogen peroxide system and tartaric acid system were investigated. The experimental results showed that under the citrate hydrogen peroxide system, when the temperature was 90 °C, the rotation speed was 600 r·min-1 and the solid-liquid ratio was 10 g·1 L-1, the leaching rate of Co and Li could reach 86.21% and 96.9%, respectively. Under the tartaric acid system, the leaching rates of Co and Li were 90.34% and 92.47%, respectively, under the previous operating conditions. The adsorption results of the lithium-ion screen showed that the adsorbents were highly selective for Li+, and the maximum adsorption capacities were 38.05 mg·g-1. In the process of lithium removal, the dissolution rate of lithium was about 91%, and the results of multiple cycles showed that the stability of the adsorbent was high. The recovery results showed that the purity of LiCl, Li2CO3 and CoCl2 crystals could reach 93%, 99.59% and 87.9%, respectively. LiCoO2 was regenerated by the sol-gel method. XRD results showed that the regenerated LiCoO2 had the advantages of higher crystallinity and less impurity.

3.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985766

RESUMO

Graphitic phase carbon nitride (g-C3N4) is a promising photocatalytic environmental material. For this study, the graphitic phase carbon nitride was prepared using a thermal polymerization method. The characteristic peaks, structures, and morphologies were determined using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM), respectively. Under the synergetic visible light catalysis of H2O2 and Na2S2O8, the degradation effects of g-C3N4 on the anionic dye methyl orange (MO) and the cationic dye rhodamine b (Rhb) were investigated. The effects of adding different volumes of H2O2 and Na2S2O8 were likewise tested. The results showed that the above two synergistic systems increased the degradation rates of MO and Rhb by 2.5 and 3.5 times, respectively, compared with pure g-C3N4, and that the degradation rates of both MO and Rhb reached 100% within 120 min and 90 min, respectively, in accordance with the primary reaction kinetics. When H2O2 and Na2S2O8 were added dropwise at 10 mL each, the degradation rates of MO and Rhb were 82.22% and 99.81%, respectively, after 30 min of open light. The results of experiments upon both zeta potential and radical quenching showed that ·OH and ·O2- were the main active radicals for dye degradation in our synergistic system. In addition, stability tests showed that the photocatalysts in the synergistic system still had good reusability. Therefore, the use of a synergistic system can effectively reduce the photogenerated electron-hole pair complexation rate, representing a significant improvement in both photocatalytic degradation and for stability levels.

4.
Int J Aging Hum Dev ; 97(3): 354-373, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36464642

RESUMO

Sport participation can play a key role in older adults' successful aging as it provides an enjoyable opportunity for leisure-time physical activity. Research focusing on the benefits of sport participation in later life and facilitators for involvement has been increasing in the past several years. Drawing on the socioecological model, this study investigated select socioecological factors that predict older adults' sport participation from a holistic perspective. An online survey provided quantitative data from 1203 adults aged 50 and older across the United States. Results from logistic regression analyses showed that personal characteristics, individual behavior, environment/policy, and life course effects were significant predictors of sport participation in later life. The findings in this study enhance our understanding of factors related to older adults' sport participation and are also of value to practitioners seeking to promote sport participation among older adults.


Assuntos
Esportes , Humanos , Pessoa de Meia-Idade , Idoso , Envelhecimento , Inquéritos e Questionários
5.
Environ Monit Assess ; 194(9): 631, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920914

RESUMO

As new persistent organic compounds, polybrominated diphenyl ethers (PBDEs) have aroused important concern because of their potential bioaccumulation and possible ecological and health risk. To examine the sources and temporal variation of PBDEs in Chaohu Lake in eastern China, the surface sediments from Nanfei River (NFR) and core sediments from four estuaries were measured. It showed that low-brominated congeners were dominant, from MonoBDEs to HeptaBDEs (referred to as Σ39PBDE). Concentrations of ∑39PBDE and the ratios of (BDE-47 + BDE-99 + BDE-100)/(BDE-153 + BDE-154) were much greater in surface sediments than in core sediments. The highest concentration was observed in a site close to the outfall of a municipal sewage treatment plant (MSTP), and the ratio was significantly correlated with ∑39PBDE. These results suggested that PentaBDE and OctaBDE commercial mixtures were widely used around Chaohu Lake and the effluent of municipal sewage was a dominant source of PBDEs to surface sediment. Compared to data from other freshwater systems around the world, the concentrations of BDE-47 and BDE-99 in this study were in the middle of the range of global data, but BDE-183 concentrations were at the high end of the range. Due to restrictions on the usage of PentanBDE and OctaBDE commercial mixtures, reductions of PBDE levels from subsurface to superficial layer were observed in all estuaries. Elevated contribution by MonoBDEs to ∑39PBDE in the estuary of the only outflow river suggests significant congener fractionation. TriBDEs, TetraBDEs, and HexaBDEs appeared to pose low risks in all surface sediments, but moderate to high risks may be expected for PentaBDEs. Overall, the results would contribute to a better understanding of the sources and environmental fate of PBDEs in the studied eutrophicated lake.


Assuntos
Éteres Difenil Halogenados , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Éteres Difenil Halogenados/análise , Lagos , Rios , Esgotos , Poluentes Químicos da Água/análise
6.
Front Plant Sci ; 13: 900352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734260

RESUMO

Appropriate fertilizer application methods can help to improve crop yields. However, limited information is available regarding how different fertilizer application depths might affect crop production in dryland winter wheat-summer maize cropping in the Loess Plateau region of China. Therefore, we conducted field experiments in 2019-2020 and 2020-2021 to evaluate the effects of changing the fertilizer placement depth on summer maize (current crop) and winter wheat (succeeding crop) productivity, as well as the resource use efficiency and soil nitrate-nitrogen residue (SNR) level. Four fertilizer placement depths were tested comprising 5 cm (FD5), 15 cm (FD15), 25 cm (FD25), and 35 cm (FD35). The nitrogen uptake by summer maize in the two seasons was 10.0, 6.5, and 11.8% higher under FD15 compared with those under FD5, FD25, and FD35, respectively, because FD15 effectively increased the root length density, root surface area density, and rate of root bleeding sap. Due to the increased nitrogen uptake, the leaf area index, plant height, stem diameter, and accumulated dry matter were improved in summer maize. The interception of photosynthetically active radiation was 3.6, 3.7, and 5.9% higher under FD15 compared with those under FD5, FD25, and FD35, respectively. The summer maize grain yield increased by 13.9-22.4% under FD15 compared with the other treatments. In addition, the SNR in the deep soil (200-300 cm) was significantly lower under FD15 during the summer maize harvest (17.9-30.7%) compared with the other treatments. Moreover, FD15 increased the winter wheat (succeeding crop) grain yield (2.6-11.2%) and reduced the SNR in the 200-300 cm soil layer (8.8-16.8%) at the winter wheat harvest. The highest radiation use efficiency, precipitation use efficiency, and nitrogen use efficiency were obtained under FD15 in both summer maize and winter wheat. These results clearly suggest that depth fertilization of 15 cm enhanced the productivity and resource use efficiency for the current and subsequent crops in rainfed farmland in the Loess Plateau of China, as well as reducing the SNR in the deep soil to promote sustainable agricultural development. These findings provide a practical reference for optimizing fertilizer application management.

7.
Ecotoxicol Environ Saf ; 171: 737-745, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30660086

RESUMO

Enrichment of potentially harmful elements in surface water results in ecological risk to the surrounding environment. Assessing the environmental risk of these elements is of great importance. In this study, surface water samples from 6 different subsidence water bodies in the Huainan coal mining area were collected. The concentrations of Cu, Ni, Pb, Cd, Co, Cr, V, Fe, Mn and Zn were measured by atomic absorption spectrophotometry, and those of As and Hg were analyzed by atomic fluorescence spectrometry. Then, human health risks through the ingestion and dermal contact pathways were assessed and analyzed on the basis of a Monte Carlo simulation. The mean and 95th percentile risks were reported. The results showed that the total carcinogenic risk values in every subsidence water body summed for Cr, Ni and As via two exposure pathways were greater than the maximum acceptable level (1 × 10-4), and Xinji'er water body had the highest carcinogenic risk. Among three elements, Ni was the highest contributor to carcinogenic risk. All non-carcinogenic health risk (hazard quotients) values except for one water area of Co (Xinji'er) were less than 1; however, the total non-carcinogenic health risks of two water bodies (Xinji'er, Xinjiyi) summed for all the elements based on mean concentrations were higher than 1. Xinji'er had the highest hazard index. The extent of the impacts of the total hazard quotients followed the order of Co > As > Cd > Hg > Pb > V >Fe > Ni > Mn > Zn > Cr. Furthermore, the total hazard quotients of Co and As via ingestion pathway summed for the six subsidence water areas were greater than 1, which should be a concern.


Assuntos
Arsênio/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Minas de Carvão , Monitoramento Ambiental , Humanos , Método de Monte Carlo , Medição de Risco , Espectrofotometria Atômica
8.
Sci Rep ; 8(1): 12736, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143668

RESUMO

Starch is the main storage carbohydrate in plants and an important natural resource for food, feed and industrial raw materials. However, the details regarding the pathway for starch biosynthesis and the diversity of biosynthetic enzymes involved in this process are poorly understood. This study uses a comprehensive phylogenetic analysis of 74 sequenced plant genomes to revisit the evolutionary history of the genes encoding ADP-glucose pyrophosphorylase (AGPase), starch synthase (SS), starch branching enzyme (SBE) and starch de-branching enzyme (DBE). Additionally, the protein structures and expression patterns of these four core genes in starch biosynthesis were studied to determine their functional differences. The results showed that AGPase, SS, SBE and DBE have undergone complicated evolutionary processes in plants and that gene/genome duplications are responsible for the observed differences in isoform numbers. A structure analysis of these proteins suggested that the deletion/mutation of amino acids in some active sites resulted in not only structural variation but also sub-functionalization or neo-functionalization. Expression profiling indicated that AGPase-, SS-, SBE- and DBE-encoding genes exhibit spatio-temporally divergent expression patterns related to the composition of functional complexes in starch biosynthesis. This study provides a comprehensive atlas of the starch biosynthetic pathway, and these data should support future studies aimed at increasing understanding of starch biosynthesis and the functional evolutionary divergence of AGPase, SS, SBE, and DBE in plants.


Assuntos
Vias Biossintéticas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Amido/biossíntese , Sequência de Aminoácidos , Domínio Catalítico , Redes Reguladoras de Genes , Filogenia , Isoformas de Proteínas/genética , Subunidades Proteicas/química , Amido/metabolismo , Fatores de Tempo , Zea mays/embriologia , Zea mays/enzimologia , Zea mays/genética
9.
Huan Jing Ke Xue ; 39(5): 2174-2183, 2018 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965517

RESUMO

To investigate the whole-reach nitrate (NO3--N) uptake dynamics in a headwater agricultural stream, we performed five pulse tracer additions of a reactive solute (as KNO3) and a conservative solute (as NaBr) in an agricultural drainage ditch in Hefei district, Chaohu Lake basin, from October 2016 to April 2017. The TASCC (tracer additions for spiraling curve characterization) approach and Michaelis-Menten (M-M) method were applied for the simulation of NO3--N uptake dynamics. Results showed that the ambient areal rate of total NO3--N uptake Uamb varied from 11.40 to 69.13 µg ·(m2 ·s)-1 with an average of 34.45 µg ·(m2 ·s)-1, and the ambient uptake velocity Vf-amb averaged 0.24 mm ·s-1 and varied from 0.07 to 0.43 mm ·s-1 across three well-mixed sub-reaches in the study. The ambient uptake length Sw-amb averaged 199.06 m with a range from 92.51 to 405.74 m, which was much smaller than the length of the drainage ditch (about 2.5 km), suggesting that the agricultural drainage ditch had a high potential for NO3--N retention. Generally, the M-M model fit the NO3--N uptake dynamics well, and the maximum uptake Umax ranged from 158 to 1280 µg ·(m2 ·s)-1 with a mean of 631.13 µg ·(m2 ·s)-1. The half saturation constant Km ranged from 0.16 to 5.52 mg ·L-1 with a mean of 1.46 mg ·L-1. According to correlation analysis, Sw-amb was negatively correlated with NO3--Namb, and Uambwas significantly positively correlated with NO3--Namb, while other nutrient spiraling metrics were not correlated with the NO3--N ambient concentration. Hydrological conditions had no distinct effect on the NO3--N retention, but both the width variability Фw and variability in cross-sectional area ФA were significantly correlated with most of the nutrient spiraling metrics, indicating that geomorphic features in the drainage ditch evidently impacted NO3--N uptake.

10.
Environ Monit Assess ; 190(1): 36, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29270684

RESUMO

Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.


Assuntos
Carvão Mineral , Lolium/metabolismo , Metais Pesados/metabolismo , Mineração , Resíduos/análise , Minas de Carvão , Cobre/metabolismo , Cobre/toxicidade , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Metais Pesados/toxicidade , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos
11.
Appl Opt ; 46(16): 3177-84, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17514272

RESUMO

A two-mode optical combiner-splitter device is designed based on all straight waveguides that maintains the integrity of the two modes during propagation and allows for an analytic analysis. The design analysis has the potential to improve the precision of the device fabrication. The design is used in an analytic optical gate based on a nonlinear Mach-Zehnder interferometer. The design reduces the size of a previously proposed device and simplifies its analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...