Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Sci Total Environ ; 935: 173082, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740220

RESUMO

Cleanliness has been paramount for municipal solid waste incineration (MSWI) systems. In recent years, the rapid advancement of intelligent technologies has fostered unprecedented opportunities for enhancing the cleanliness of MSWI systems. This paper offers a review and analysis of cutting-edge intelligent technologies in MSWI, which include process monitoring, intelligent algorithms, combustion control, flue gas treatment, and particulate control. The objective is to summarize current applications of these techniques and to forecast future directions. Regarding process monitoring, intelligent image analysis has facilitated real-time tracking of combustion conditions. For intelligent algorithms, machine learning models have shown advantages in accurately forecasting key process parameters and pollutant concentrations. In terms of combustion control, intelligent systems have achieved consistent prediction and regulation of temperature, oxygen content, and other parameters. Intelligent monitoring and forecasting of carbon monoxide and dioxins for flue gas treatment have exhibited satisfactory performance. Concerning particulate control, multi-objective optimization facilitates the sustainable utilization of fly ash. Despite remarkable progress, challenges remain in improving process stability and monitoring instrumentation of intelligent MSWI technologies. By systematically summarizing current applications, this timely review offers valuable insights into the future upgrade of intelligent MSWI systems.

2.
Bioresour Technol ; 398: 130515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437970

RESUMO

Two kinds of Fe2O3-modified digestate-derived biochar (BC) were prepared and their effects on anaerobic digestion (AD) of kitchen waste (40.0 g VS/L) were investigated, with BC and Fe2O3 addition used as a comparison. The results showed that Fe2O3-modified BC (Fe2O3-BC1 prepared by co-precipitation and Fe2O3-BC2 by impregnation) significantly increased methane yield (20.8 % and 16.4 %, respectively) and reduced volatile fatty acid concentration (35.6 % and 29.6 %, respectively). Microbial high-throughput analysis revealed that Fe2O3-modified BC selectively enriched Clostridium (47.3 %) and Methanosarcina (72.2 %), suggesting that direct interspecies electron transfer contributing to improved biogas production performance was established and enhanced. Correlation analysis indicated that biogas production performance was improved by the larger specific surface area (83.4 m2/g), pore volume (0.101 cm3/g), and iron content (97.4 g/Kg) of the BC. These results offer insights for enhancing the efficacy of AD processes using Fe2O3-modified BCs as additives.


Assuntos
Biocombustíveis , Carvão Vegetal , Compostos Férricos , Ferro , Anaerobiose
3.
Chemosphere ; 354: 141732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499072

RESUMO

Malignant invasive Erigeron canadensis, as a typical lignocellulosic biomass, is a formidable challenge for sustainable and efficient resource utilization, however nanobubble water (NBW) coupled with anaerobic digestion furnishes a prospective strategy with superior environmental and economic effectiveness. In this study, influence mechanism of various O2-NBW addition times on methanogenic performance of E. canadensis during anaerobic digestion were performed to achieve the optimal pollution-free energy conversion. Results showed that supplementation of O2-NBW in digestion system could significantly enhance the methane production by 10.70-16.17%, while the maximum cumulative methane production reached 343.18 mL g-1 VS in the case of one-time O2-NBW addition on day 0. Furthermore, addition of O2-NBW was conducive to an increase of 2-90% in the activities of dehydrogenase, α-glucosidase and coenzyme F420. Simultaneously, both facultative bacteria and methanogenic archaea were enriched as well, further indicating that O2-NBW might be responsible for facilitating hydrolytic acidification and methanogenesis. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) cluster analysis, provision of O2-NBW enhanced the metabolism of carbohydrate and amino acid, translation as well as membrane transport of bacteria and archaea. This study might offer the theoretical guidance and novel insights for efficient recovery of energy from lignocellulosic biomass on account of O2-NBW adhibition in anaerobic digestion system, progressing tenor of carbon-neutral vision.


Assuntos
Erigeron , Anaerobiose , Água , Bactérias , Archaea , Suplementos Nutricionais , Metano , Reatores Biológicos , Esgotos/química
4.
Nat Commun ; 15(1): 1654, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395949

RESUMO

The ever-growing quantities of persistent Polytetrafluoroethylene (PTFE) wastes, along with consequential ecological and human health concerns, stimulate the need for alternative PTFE disposal method. The central research challenge lies in elucidating the decomposition mechanism of PTFE during high-temperature waste treatment. Here, we propose the PTFE microscopic thermal decomposition pathways by integrating plasma gasification experiments with multi-scale simulations strategies. Molecular dynamic simulations reveal a pyrolysis-oxidation & chain-shortening-deep defluorination (POCD) degradation pathway in an oxygen atmosphere, and an F abstraction-hydrolysis-deep defluorination (FHD) pathway in a steam atmosphere. Density functional theory computations demonstrate the vital roles of 1O2 and ·H radicals in the scission of PTFE carbon skeleton, validating the proposed pathways. Experimental results confirm the simulation results and show that up to 80.12% of gaseous fluorine can be recovered through plasma gasification within 5 min, under the optimized operating conditions determined through response surface methodology.

5.
Sci Total Environ ; 920: 170712, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38325461

RESUMO

Biochar is a promising sorbent for Cd removal from water, while the disposal of the exhausted Cd-enriched biochar remains a challenge. In this study, pyrolysis was employed to treat the exhausted biochar under N2 and CO2 atmospheres at 600-900 °C, and the fate of Cd during pyrolysis and characteristics of high-valued products were determined. The results indicated that higher temperature and CO2 atmosphere favored the volatilization of Cd. Based on the toxicity characteristic leaching procedure (TCLP) results, the pyrolysis treatment under both atmospheres enhanced the stability of Cd, and the leached Cd concentration of regenerated biochar obtained at high temperatures (>800 °C) was lower than 1 mg/L. Compared with the pristine biochar, the regenerated biochar demonstrated higher carbon content and pH, whereas the contents of oxygen and hydrogen declined, and exhibited promising sorption properties (35.79 mg/g). The atmosphere played an important role in modifying biochar properties and syngas composition. The N2 atmosphere facilitated CH4 production, whereas the CO2 atmosphere increased the proportion of CO. These results implied that pyrolysis can be a valuable and environmental-friendly strategy for the treatment and reuse of exhausted biochar sorbent.


Assuntos
Cádmio , Pirólise , Dióxido de Carbono , Carvão Vegetal/química
6.
Waste Manag ; 177: 232-242, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342060

RESUMO

Heterogeneity of pyrolytic parameters in municipal solid waste (MSW) significantly hinders its waste-to-energy efficiency. So far, hardly any light has been shed on current pyrolytic heterogeneity conditions or feasible pyrolytic homogeneity enhancement approaches of MSW. Accordingly, pyrolytic properties (Ea and logA) of 130 MSW samples in 6 categories were collected from literature. A kinetic parameters clustering-based sorting strategy for MSW was proposed. A so-called C index was established to compare their sorting performance for Ea and logA against two traditional sorting strategies (substance categorization and density clustering). Results showed that the proposed sorting strategies outperformed the traditional ones in pyrolytic homogeneity enhancement, where the optimal C_Ea and C_logA reached 1578.30 kJ/mol and 93.11 -log min. Among investigated clustering methods, k-means clustering outperformed hierarchical clustering, which could be attributed to its adaptability to the sample structure. Future perspectives involving data set expansion, model framework development, and downstream technologies matching were also discussed. The index C established in this study can be used to evaluate other clustering models.


Assuntos
Pirólise , Resíduos Sólidos , Análise por Conglomerados , Cinética , Tecnologia
7.
Sci Rep ; 14(1): 265, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167851

RESUMO

Earth pressure shields are widely used in tunnel construction due to their low environmental impact and mechanized operations. However, ensuring the stability of the excavation surface during the construction process is crucial. Any instability in the excavation surface can lead to soil destruction, such as body collapse or surface uplift. Additionally, the tunneling process can cause deformation disturbances to nearby buildings. In the case of Beijing Metro Line 17, detailed survey data and construction monitoring data were collected through field surveys and tests. The study combined theoretical analysis and numerical simulations to investigate the impact of shield tunneling in clay layers on neighboring buildings. The focus was on analyzing the physical deformation and the response law of influencing factors, such as stratum parameters and engineering effects on surface settlement, building inclination, and distortion. Furthermore, sensitivity analysis of the deformation impact was conducted, and corresponding measures for deformation control were proposed.

8.
Chemosphere ; 350: 141104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171400

RESUMO

The loss of active components, weak acid resistance, and low recover efficiency of common Ca-based catalysts limited its further development and application. In this study, to effectively produce biodiesel from waste cooking oil (WCO), a green and recyclable magnetic acid-base bifunctional CoFe/biochar/CaO catalyst was prepared from sargassum and river snail shell waste via hydrothermal method. The catalysts' structure and properties were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), CO2/NH3 temperature programmed desorption (CO2/NH3 TPD), etc., The prepared catalyst mainly consisted of the carbon skeleton, CoFe alloy, and CaO. CoFe alloy provided catalyst's ferromagnetism for magnetic separation as well as acid sites for transesterification of WCO. Ca and other metal species with nanoscale (∼5.64 nm) were dispersively anchored on sargassum biochar surface, thereby leading to good catalytic activity (99.21% biodiesel yield) and stability (91.70% biodiesel yield after the 5th cycle). In addition, response surface methodology-Box-Behnken design (RSM-BBD) revealed the optimal operational conditions were 16:1 methanol/oil molar ratio, 3 wt% catalyst dosage, 73 °C for 157 min. The maximum biodiesel yield predicted value was 98.29% and the experimental value was 99.21%, indicating good satisfaction of the established model. Moreover, the quality of WCO biodiesel met the ASTM D6751 standards. This study benefits magnetic waste-derived acid-base bifunctional catalysts for the disposal of WCO towards sustainable biodiesel production.


Assuntos
Biocombustíveis , Carvão Vegetal , Óleos de Plantas , Óleos de Plantas/química , Biocombustíveis/análise , Dióxido de Carbono , Esterificação , Culinária , Catálise , Ligas , Fenômenos Magnéticos
9.
Food Chem ; 441: 138332, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183722

RESUMO

The impact of oxidized myoglobin (Mb) on myofibrillar protein (MP) oxidation and water retention was investigated. Results showed that the oxidation of Mb increased with increasing concentration of oxidized linoleic acid (OLA). In the presence of 100 mmol/L OLA, hemin iron decreased by 62.07 % compared to the control group. Further investigation showed that mild oxidation of Mb (≤10 mmol/L OLA) increased the water retention and the absolute value of the zeta potential of MP, whereas excessive oxidation (>10 mmol/L OLA) decreased these properties. With the increase of Mb oxidation, the carbonyl content in MP increased, and α-helices changed to random helix. And the tertiary structure changed. Pearson correlation analysis suggested that oxidized Mb affected the water retention of MP, which was closely related to hemin iron and non-hemin iron. In conclusion, OLA induced Mb oxidation, further promoted MP oxidation and affected its water retention.


Assuntos
Hemina , Mioglobina , Mioglobina/química , Hemina/química , Oxirredução , Ferro , Água
10.
Sci Total Environ ; 917: 170371, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280582

RESUMO

Excavated waste is a byproduct of microbial decomposition and fermentation following landfill disposal. The effective management and utilization of excavated waste offer broad prospects for environmental and resource protection, as well as economic growth. While current research predominantly focuses on plastics in landfills, the physico-chemical properties of excavated waste over extended landfilling time remain unclear. This study aimed to address this gap by excavating waste from a landfill in Tianjin, China, with a maximum landfilling time of 18 years. The findings revealed that, compared to municipal solid waste (MSW), the excavated waste exhibited increased calorific value, ash content, and fixed carbon content after screening the landfill-mined-soil-like-fine fraction. The average calorific value of the excavated waste could reach 57.8 MJ/kg. Additionally, the oxygen content in the excavated combustible waste exceeded that of MSW, increasing from 25.59 % to 34.22 %. This phenomenon is potentially linked to the oxidation of attached soil impurities and waste. The study identified polyethylene (PE), polypropylene (PP), expanded polystyrene (EPS), polyethylene terephthalate (PET), and wood as the primary combustible components. Notably, the excavated waste exhibited a significant decrease in surface gloss, adopting a rough texture with apparent holes, potentially attributed to the acidification and corrosion of organic matter during fermentation. Nevertheless, the breaking of molecular bonds could also contribute to waste fragmentation. Furthermore, an increase in landfilling time resulted in a more pronounced decrease in mechanical properties. For instance, the failure load of PE decreased from 15.61 N to 6.46 N, and PET reduced from 884.83 N to 186.56 N. The chemical composition of excavated waste has changed, with -OH and CO observed in PE with an 18-year landfilling time. In conclusion, these results provide a theoretical foundation for the recycling of excavated waste and contribute to the advancement of waste management and recycling technologies.

11.
Food Chem ; 443: 138563, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290301

RESUMO

In this study, golden pomfret myofibrillar protein (MP) was used as the research object, and the oxidation system of malondialdehyde (MDA) as an inducer and the static digestion model in vitro was established for the analysis of the changes in protein structure and molecular morphology during oxidation and digestion. Subsequently, the effects of MDA-mediated oxidation on the structure and digestive properties of golden pomfret myofibrillar fibrillar protein were determined. The results showed that the hydrolysis degree and digestion rate of MP were inhibited with the increase in MDA concentration (0, 0.5, 1, 2, 5, 10 mmol/L), and the carbonyl group, surface hydrophobicity, irregular curling, and MDA content increased significantly (P < 0.05), whereas the total sulfhydryl groups, α-helices, free amino groups, hydrolysis degree, and MDA incorporation decreased significantly (P < 0.05), The molecular particle size was significantly reduced (P < 0.05), and the molecular morphology and molecular structure were analyzed (P >0.05). Finally, the molecular size and cross-linking degree gradually increased. In conclusion, MDA can alter the structure and morphology of proteins, resulting in a decrease in hydrolysis and digestion rate. This study can provide theoretical support and reference for the regulation of protein digestion.


Assuntos
Proteínas Musculares , Alimentos Marinhos , Proteínas Musculares/química , Oxirredução , Miofibrilas/química , Hidrólise
12.
Bioresour Technol ; 393: 130112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013034

RESUMO

This study focused on the impacts of heterogeneous Fenton-like pretreatment on the humification and bacterial community during co-composting of wheat straw with cattle dung covered with a semi-permeable membrane. In this study, FeOCl and low concentration of H2O2 were used for pretreatment and composting, which lasted for 39 days. The results showed that the pretreatment promoted the humification process, with degree of polymerization and percentage of humic acid increasing by 53.2 % and 7.3 %, respectively. Furthermore, the diversity and structure of bacterial communities were altered by pretreatment. During the thermophilic phase, pretreatment considerably promoted the metabolism of carbohydrate. According to redundancy analysis, C/N, moisture and organic matter were the key environmental factors that dominated the microbial community. In summary, heterogeneous Fenton-like pretreatment provided a novel idea for improving the humic acid content and maturity of the compost pile.


Assuntos
Compostagem , Microbiota , Animais , Bovinos , Substâncias Húmicas , Solo , Peróxido de Hidrogênio , Bactérias , Esterco
13.
Environ Sci Ecotechnol ; 20: 100341, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38094258

RESUMO

Municipal wastewater treatment plays an indispensable role in enhancing water quality by eliminating contaminants. While the process is vital, its environmental footprint, especially in terms of greenhouse gas (GHG) emissions, remains underexplored. Here we offer a comprehensive assessment of GHG emissions from wastewater treatment plants (WWTPs) across China. Our analyses reveal an estimated 1.54 (0.92-2.65) × 104 Gg release of GHGs (CO2-eq) in 2020, with a dominant contribution from N2O emissions and electricity consumption. We can foresee a 60-65% reduction potential in GHG emissions with promising advancements in wastewater treatment, such as cutting-edge biological techniques, intelligent wastewater strategies, and a shift towards renewable energy sources.

14.
Clin Case Rep ; 11(12): e8284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107079

RESUMO

Transfusion-related acute lung injury (TRALI) is characterized by non-cardiogenic pulmonary edema and acute hypoxemia. There are few reports of HLA-II antibodies causing TRALI in China.

15.
Huan Jing Ke Xue ; 44(10): 5870-5878, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827802

RESUMO

In the 3D printing industry, photopolymerization-based 3D printing is considered to have the characteristics of high printing accuracy and mature technology. Therefore, it is of wide concern in industrial application and academic research. With the rapid development of photopolymerization-based technology, photopolymerization-based plastic waste will inevitably be produced in the process of product manufacturing and use. This kind of plastic waste is a new type of organic solid waste with an incalculable growth rate, and its impact on the environment is difficult to predict. Based on available research results, the latest research progress of sources, disposal technologies, and environmental impact of photopolymerization-based plastic waste were summarized and analyzed. The results revealed that the photopolymerization-based plastic waste was covalently crosslinked with thermosetting plastic. It had relatively higher activation energy and photo-sensitive chromogenic groups. There were some potential hazards to the environment and biosome caused by the raw material, printing process, and waste disposal process of photopolymerization-based plastic. Therefore, prospects and suggestions were proposed for the possibility of future disposal of photopolymerization-based plastic waste, in order to provide a reference for developing the photopolymerization-based 3D printing industry.

16.
Bioresour Technol ; 390: 129846, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820970

RESUMO

Tar problem seriously hinders the development of biomass gasification. The tar formation of biomass is greatly influenced by cellulose. In this work, PY-GC/MS was employed for providing a precise insight into the formation of primary and secondary products, and a tar contribution index was introduced to evaluate the potential of tar formation from different origins. Combined with statistical analysis and corroboration by DFT analysis, key intermediates for tar formation are recognized, and corresponding influence is confirmed. A new framework from cellulose to tar was built. The secondary reaction acts a more important role for tar formation. The aromatic precursors and high-activity small-molecular gases are two key compounds responding to tar formation, and the existence of high-activity small-molecular gases could significantly reduce the energy barrier during tar formation. For furans, the energy barrier can be reduced from 100.2 kcal/mol to 74.2 kcal/mol in the presence of ethylene.


Assuntos
Celulose , Gases , Biomassa
17.
AMB Express ; 13(1): 102, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752386

RESUMO

Effective disinfection of contaminated surfaces is essential for preventing the transmission of pathogens. In this study, we investigated the UV irradiance and wavelength distribution of a 222-nm ultraviolet C (UVC) excimer lamp and its disinfection efficacy against microorganisms in laboratory conditions. By using a carrier quantitative germicidal test with stainless steel sheets as carriers, we examined the disinfection effect of the 222-nm UVC lamp on three standard strains-Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We tested the disinfection efficacy under different conditions by adjusting irradiation time, as well as the state and temperature of the stainless steel carriers. Our results indicated that a bacterial suspension in PBS and not-dried stainless steel carriers yielded better disinfection than in TSB and dried carriers. Additionally, carrier temperature had no significant impact on disinfection efficacy. When utilizing a bacterial suspension in PBS and non-dried carriers at a temperature of 20 °C, the three bacteria were eliminated by 222-nm UVC excimer lamp irradiation in just 15 s. In contrast, when using a bacterial suspension in TSB and dried carriers at temperatures of 20 °C, 4 °C, or - 20 °C, the three bacteria were eradicated by 222-nm UVC excimer lamp irradiation in 60 s. Comparatively, the LPM lamp required more than 10 min to achieve the same disinfection effect. Our data demonstrate that the 222-nm UVC excimer lamp has higher irradiance and a more potent microbial disinfection effect than the LPM lamp, requiring significantly less irradiation time to achieve the same disinfection effect under identical conditions. Furthermore, the 222-nm UVC excimer lamp exhibited a substantial disinfection effect on bacterial propagules at low temperatures. Our findings support the optimization of "tunnel-type" cold-chain goods disinfection devices, providing an alternative, highly efficient, and practical tool to combat the spread of SARS-CoV-2 through cold-chain systems.

18.
J Hazard Mater ; 458: 132002, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423137

RESUMO

Magnetic biochar is excellent for separation and peroxymonosulfate (PMS) activation. Copper doping could improve the catalytic capability of magnetic biochar significantly. In this study, cow dung biochar is applied to investigate the effects of copper doping on the magnetic biochar, focusing on the specific influence on the consumption of active sites, the production of oxidative species and the toxicity of degradation intermediates. The results showed that copper doping promoted the uniform distribution of iron sites on the biochar surface and reduced iron aggregation. At the same time, copper doping interpreted the biochar with larger specific surface area, which was beneficial to the adsorption and degradation of sulfamethoxazole (SMX). The SMX degradation kinetic constant with copper-doped magnetic biochar was 0.0403 min-1, which was 1.45 times than that of magnetic biochar. Besides, copper doping might accelerate the consumption of CO, Fe0, Fe2+ sites and hinder the activation of PMS at copper-related sites. Furthermore, copper doping promoted the PMS activation by magnetic biochar through accelerated electron transfer. For the oxidative species, copper doping accelerated the production of hydroxyl radicals, singlet oxygen, and superoxide radicals in solution and inhibited the generation of sulfate radicals. In addition, SMX could be directly decomposed into less toxic intermediates in the copper-doped magnetic biochar/PMS system. In conclusion, this paper provides insight and analysis of the advantages of copper doping on the magnetic biochar, which helps to facilitate the design and practical application of bimetallic biochar.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Cobre , Poluentes Químicos da Água/química , Peróxidos/química , Ferro/química , Fenômenos Magnéticos
19.
Water Res ; 241: 120166, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290196

RESUMO

Dissolved organic matters (DOM) are widely present in different water sources, causing significant effects on water treatment processes. Herein, the molecular transformation behavior of DOM during peroxymonosulfate (PMS) activation by biochar for organic degradation in a secondary effluent were comprehensively analyzed. Evolution of DOM was identified and inhibition mechanisms to organic degradation were elucidated. DOM underwent oxidative decarbonization (e.g., -C2H2O, -C2H6, -CH2 and -CO2), dehydrogenation (-2H) and dehydration reactions by ·OH and SO4·-. N and S containing compounds witnessed deheteroatomisation (e.g., -NH, -NO2+H, -SO2, -SO3, -SH2), hydration (+H2O) and N/S oxidation reactions. Among DOM, CHO-, CHON-, CHOS-, CHOP- and CHONP-containing molecules showed moderate inhibition while condensed aromatic compounds and aminosugars exhibited strong and moderate inhibition effects on contaminant degradation. The fundamental information could provide references for the rational regulation of ROS composition and DOM conversion process in a PMS system. This in turn offered theoretical guidance to minimize the interference of DOM conversion intermediates on PMS activation and degradation of target pollutants.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Ambientais , Peróxidos , Compostos Orgânicos
20.
J Hazard Mater ; 458: 131926, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379591

RESUMO

Emerging contaminants can be removed effectively in heterogeneous Fenton-like systems. Currently, catalyst activity and contaminant removal mechanisms have been studied extensively in Fenton-like systems. However, a systematic summary was lacking. This review summarized: 1) The effects of various heterogeneous catalysts on emerging contaminants degradation by activating H2O2; 2) The role of active sites in different catalysts during the activation of H2O2 and their contribution to the generation of active species; 3) The modulation of degradation pathways of emerging contaminants. This paper will help scholars to advance the controlled construction of active sites in heterogeneous Fenton-like systems. Suitable heterogeneous Fenton catalysts can be selected in practical water treatment processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...