Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
RSC Adv ; 14(23): 16218-16227, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38769972

RESUMO

In this study, 24 novel ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine were designed and synthesized. Bioactivity assay showed that some of the target compounds exhibited moderate to good antifungal activity against Botryosphaeria dothidea BD), Phomopsis sp. (PS), Botrytis cinerea (BC), Fusarium spp. (FS), Fusarium graminearum (FG), and Colletotrichum sp. (CS). Especially, compound 6f demonstrated superior antifungal activity against Phomopsis sp., with an EC50 value of 12.64 µg mL-1, outperforming pyrimethanil (35.16 µg mL-1) and hymexazol (27.01 µg mL-1). Meanwhile, compound 6p showed strong antibacterial activity against X. axonopodis pv. citri (XAC) in vitro, with an inhibition ratio of 85.76%, which was higher than thiodiazole copper's 76.59% at 100 µg mL-1. Furthermore, molecular docking simulations elucidated that compound 6f engaged in hydrogen bonding with the succinate dehydrogenase (SDH) enzyme at SER-17, SER-39, ARG-14 and ARG-43 sites, clarifying its mode of action. This study highlights the potential of these novel ferulic acid derivatives as promising agents for controlling fungal and bacterial threats to plant health. To the best of our knowledge, this study represents the first report on the antifungal and antibacterial properties of ferulic acid derivatives containing 1,3,4-oxadiazole thioether and trifluoromethyl pyrimidine skeleton.

2.
Mol Divers ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687400

RESUMO

In this paper, a series of novel 1,2,4-trizaole-substituted 1,3,4-oxadiazole derivatives with a dual thioether moiety were constructed. The synthetic compounds were characterized by 1H NMR, 13C NMR, HRMS, and single crystal diffraction. The antimicrobial activities of title compounds against fungi (Pyricutaria oryzae Cav., Phomopsis sp., Botryosphaeria dothidea, cucumber Botrytis cinerea, tobacco Botrytis cinerea, blueberry Botrytis cinerea) and bacteria (Xanthomonas oryzae pv. oryzicola, Xoc; Xanthomonas axonopodis pv. citri, Xac) revealed these compounds possessed excellent antibacterial activity through mycelial growth rate method and turbidity method, respectively. Among them, compounds 7a, 7d, 7g, 7k, 7l, and 7n had the antibacterial inhibition rate of 90.68, 97.86, 93.61, 97.70, 97.26, and 92.34%, respectively. The EC50 values of 7a, 7d, 7g, 7k, 7l, and 7n were 58.31, 48.76, 58.50, 40.11, 38.15, and 46.99 µg/mL, separately, superior to that of positive control pesticide thiodiazole copper (104.26 µg/mL). The molecular docking simulation of compound 7l and glutathione s-transferase also confirmed its good activity. The in vivo bioassay toward Xac infected citrus leaves was also performed to evaluate the potential of compounds as efficient antibacterial reagent. Further study of antibacterial mechanism was also carried out, including extracellular polysaccharide production, permeability of bacterial membrane, and scanning electron microscope observations. The excellent antibacterial activities of these compounds provided a strong support for its application for preventing and control plant diseases.

3.
ACS Omega ; 9(1): 1424-1435, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222640

RESUMO

In recent years, the severity of plant diseases caused by plant pathogenic fungi and viruses has been on the rise. However, there is a limited availability of pesticide chemicals in the market for effectively controlling both fungal and viral infections. To solve this problem, a series of novel pyrimidine derivatives containing a 1,3,4-oxadiazole thioether fragment were synthesized. Among them, compound 6s exhibited remarkable in vivo protection activity against tobacco mosaic virus, demonstrating the superior 50% effective concentration (EC50) value of 0.42 µM, outperforming ningnanmycin (0.60 µM). Meanwhile, compound 6s exhibited remarkable antifungal activity against Botrytis cinerea Pers. in postharvest blueberry in vitro, with an EC50 value of 0.011 µM, surpassing the inhibition rate of Pyrimethanil (0.262 µM). Additionally, compound 6s also demonstrated remarkable curative and protection activities against blueberry fruit gray mold in vivo, with control efficiencies of 54.2 and 60.4% at 200 µg/mL concentration, respectively, which were comparable to those of Pyrimethanil (49.3 and 63.9%, respectively). Scanning electron microscopy showed that the compound 6s-treated hyphae of B. cinerea Pers. in postharvest blueberry became abnormally collapsed and shriveled. Furthermore, the molecular docking simulation demonstrated that compound 6s formed hydrogen bonds with SER-17, ARG-43, and SER-39 of succinate dehydrogenase (SDH), providing a possible explanation for the mechanism of action between the target compounds and SDH. This study represents the first report on the antiviral and antifungal activities of novel pyrimidine derivatives containing a 1,3,4-oxadiazole thioether fragment.

4.
Plant Physiol Biochem ; 197: 107647, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36940521

RESUMO

Peach (Prunus persica L. Batsch) and apricot (Prunus armeniaca L.) are two species of economic importance for fruit production in the genus Prunus. Peach and apricot fruits exhibit significant differences in carotenoid levels and profiles. HPLC-PAD analysis showed that a greater content of ß-carotene in mature apricot fruits is primarily responsible for orange color, while peach fruits showed a prominent accumulation of xanthophylls (violaxanthin and cryptoxanthin) with yellow color. There are two ß-carotene hydroxylase genes in both peach and apricot genomes. Transcriptional analysis revealed that BCH1 expresses highly in peach but lowly in apricot fruit, showing a correlation with peach and apricot fruit carotenoid profiles. By using a carotenoid engineered bacterial system, it was demonstrated that there was no difference in the BCH1 enzymatic activity between peach and apricot. Comparative analysis about the putative cis-acting regulatory elements between peach and apricot BCH1 promoters provided important information for our understanding of the differences in promoter activity of the BCH1 genes in peach and apricot. Therefore, we investigated the promoter activity of BCH1 gene through a GUS detection system, and confirmed that the difference in the transcription level of the BCH1 gene resulted from the difference of the promoter function. This study provides important perspective to understanding the diversity of carotenoid accumulation in Prunus fruits such as peach and apricot. In particular, BCH1 gene is proposed as a main predictor for ß-carotene content in peach and apricot fruits during the ripening process.


Assuntos
Prunus armeniaca , Prunus persica , Prunus , Prunus armeniaca/genética , Prunus persica/genética , Frutas/metabolismo , beta Caroteno , Prunus/genética , Carotenoides/metabolismo
5.
Comput Biol Med ; 149: 105939, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037629

RESUMO

BACKGROUND: Use of artificial intelligence to identify dermoscopic images has brought major breakthroughs in recent years to the early diagnosis and early treatment of skin cancer, the incidence of which is increasing year by year worldwide and poses a great threat to human health. Achievements have been made in the research of skin cancer image classification by using the deep backbone of the convolutional neural network (CNN). This approach, however, only extracts the features of small objects in the image, and cannot locate the important parts. OBJECTIVES: As a result, researchers of the paper turn to vision transformers (VIT) which has demonstrated powerful performance in traditional classification tasks. The self-attention is to improve the value of important features and suppress the features that cause noise. Specifically, an improved transformer network named SkinTrans is proposed. INNOVATIONS: To verify its efficiency, a three step procedure is followed. Firstly, a VIT network is established to verify the effectiveness of SkinTrans in skin cancer classification. Then multi-scale and overlapping sliding windows are used to serialize the image and multi-scale patch embedding is carried out which pay more attention to multi-scale features. Finally, contrastive learning is used which makes the similar data of skin cancer encode similarly so that the encoding results of different data are as different as possible. MAIN RESULTS: The experiment is carried out based on two datasets, namely (1) HAM10000: a large dataset of multi-source dermatoscopic images of common skin cancers; (2)A clinical dataset of skin cancer collected by dermoscopy. The model proposed has achieved 94.3% accuracy on HAM10000 and 94.1% accuracy on our datasets, which verifies the efficiency of SkinTrans. CONCLUSIONS: The transformer network has not only achieved good results in natural language but also achieved ideal results in the field of vision, which also lays a good foundation for skin cancer classification based on multimodal data. This paper is convinced that it will be of interest to dermatologists, clinical researchers, computer scientists and researchers in other related fields, and provide greater convenience for patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Inteligência Artificial , Dermatologistas , Dermoscopia/métodos , Humanos , Neoplasias Cutâneas/diagnóstico por imagem
6.
Front Chem ; 10: 942185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844659

RESUMO

Pitaya, or dragon fruit, is a typical tropical fruit with an appealing taste and diverse health benefits to humans. The plantation of pitaya in Guizhou province in China has greatly boosted the income of local farmers and alleviated poverty. However, the frequent occurrence of postharvest diseases has brought large economic loss. To find a solution, we set out to identify the postharvest disease-causing agents of Guizhou pitaya. Several fungi were isolated from diseased pitaya and identified as species based on the ITS1 sequence similarity. Of them, Penicillium spinulosum, Phoma herbarum, Nemania bipapillata, and Aspergillus oryzae were, for the first time, found to cause dragon fruit disease. In consideration of their prevalence in postharvest fruit diseases, Alternaria alternata H8 and Fusarium proliferatum H4 were chosen as representative pathogens for the drug susceptibility test. Among the tested drugs and plant extracts, 430 g/L tebuconazole and 45% prochloraz were found to be the most potent fungicides against H8 and H4, respectively. The research provides insights into the mechanism and control of postharvest diseases of dragon fruits in Guizhou, China, and thus could be of economic and social significance to local farmers and the government.

7.
Front Plant Sci ; 13: 898994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712556

RESUMO

In this study, the fungus Penicillium sp. was isolated from rotting postharvest blueberry fruits at different storage stages and identified into genera. Inoculation of this strain on the surface of fresh fruits was able to cause rotting. The strain was then used as a reference strain to test the chemical control effect of ozone fumigation during storage. The results showed that ozone fumigation had an obvious inhibitory effect on Penicillium sp. in a dose- and time-dependent manner. Meanwhile, ozone fumigation treatment could prevent the loss of fruit firmness, slow down the decrease of soluble solids, total phenolics, and anthocyanins, and maintain a lower activity of PPO and higher activities of POD and CAT. As far as we know, this is the first report on the effects of ozone fumigation on the postharvest pathogenic fungi Penicillium sp. and on the storage quality of postharvest blueberry collected from Majiang County, Guizhou province, China.

8.
Front Genet ; 12: 752485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970297

RESUMO

RHD variants in D¯ Chinese pregnant women arose difficulties in management during pregnancy. Therefore, this study aims to precisely manage D¯ pregnant women by evaluating the spectrum of RHD mutations in D¯ pregnant women and getting insight into the possible rare alleles of RHD. A total of 76 D¯ pregnant women were analyzed by performing polymerase chain reactions with sequence-specific primers (PCR-SSP), the 10 RHD exons Sanger sequencing, RHD zygosity detection, and mRNA sequencing (mRNA-seq). About 40% of alleles are variations of RHD, including RHD 1227A homozygous, RHD-CE(2-9)-D, et al. Therefore, we developed a molecular diagnostic strategy for Chinese women, and most D¯ pregnant women can be diagnosed with this simple decision tree. After RHD genotyping for D¯ pregnancy women, we eliminated at least 15% unnecessary ante- and postpartum injections of Rh immunoglobulin (RhIG). As the first pedigree study and the first functional analysis under physiological conditions, mRNA-seq revealed that c.336-1G>A mutation mainly led to the inclusion of the intron 2, which indirectly explained the D¯ phenotype in this family. We also developed a robust protocol for determining fetal RhD status from maternal plasma. All 31 fetuses were predicted as RhD positive and confirmed the RhD status after birth.

9.
Front Microbiol ; 12: 731425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759898

RESUMO

Trichodermin, a trichothecene first isolated in Trichoderma species, is a sesquiterpenoid antibiotic that exhibits significant inhibitory activity to the growth of many pathogenic fungi such as Candida albicans, Rhizoctonia solani, and Botrytis cinerea by inhibiting the peptidyl transferase involved in eukaryotic protein synthesis. Trichodermin has also been shown to selectively induce cell apoptosis in several cancer cell lines and thus can act as a potential lead compound for developing anticancer therapeutics. The biosynthetic pathway of trichodermin in Trichoderma has been identified, and most of the involved genes have been functionally characterized. An exception is TRI3, which encodes a putative acetyltransferase. Here, we report the identification of a gene cluster that contains seven genes expectedly involved in trichodermin biosynthesis (TRI3, TRI4, TRI6, TRI10, TRI11, TRI12, and TRI14) in the trichodermin-producing endophytic fungus Trichoderma taxi. As in Trichoderma brevicompactum, TRI5 is not included in the cluster. Functional analysis provides evidence that TRI3 acetylates trichodermol, the immediate precursor, to trichodermin. Disruption of TRI3 gene eliminated the inhibition to R. solani by T. taxi culture filtrates and significantly reduced the production of trichodermin but not of trichodermol. Both the inhibitory activity and the trichodermin production were restored when native TRI3 gene was reintroduced into the disruption mutant. Furthermore, a His-tag-purified TRI3 protein, expressed in Escherichia coli, was able to convert trichodermol to trichodermin in the presence of acetyl-CoA. The disruption of TRI3 also resulted in lowered expression of both the upstream biosynthesis TRI genes and the regulator genes. Our data demonstrate that T. taxi TRI3 encodes an acetyltransferase that catalyzes the esterification of the C-4 oxygen atom on trichodermol and thus plays an essential role in trichodermin biosynthesis in this fungus.

10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(8): 803-806, 2021 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-34365630

RESUMO

OBJECTIVE: To explore the molecular mechanism of a case where RhD genotyping did not match serological results. METHODS: The serological results of 8 members from two generations of this family were analyzed. And according to Mendelian law of inheritance, RhD genotyping, zygotic type determination and gene sequencing were performed for the family members. RESULTS: The proband and one of her cousins have the same RhD alleles, both of them have a 336-1G>A intron variant RhD allele and a complete RhD deletion allele. The variant alleles are inherited from two of their parents with blood relationship, while the complete-deleted alleles come from the other. 336-1G>A means that the last base G of the second intron of the RhD gene is mutated to A, which leads to a negative RhD serology and a positive genotype in the proband. CONCLUSION: There was a rare 336-1G> A intron variant gene (RhD * 01N.25) in this family, which was a recessive gene relative to the RhD gene and resulted in RhD phenotype negative.


Assuntos
Sistema do Grupo Sanguíneo Rh-Hr , Alelos , Feminino , Genótipo , Humanos , Íntrons/genética , Linhagem , Fenótipo , Sistema do Grupo Sanguíneo Rh-Hr/genética
11.
Plant Sci ; 304: 110739, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568291

RESUMO

During ripening, peach fruits (Prunus persica L. Batsch) rapidly progress to the senescent stage, resulting in a brief shelf life. Abscisic acid (ABA) plays an important role in regulating the ripening process, both in climacteric and non-climacteric fruits. A key enzyme for ABA biosynthesis in higher plants is 9-cis-epoxycarotenoid dioxygenase (NCED). In this study, two NCED isozymes, PpNCED1 and PpNCED5, were identified in peach fruits. While both NCED genes had similar transcriptional patterns (up-regulation) at the beginning of peach ripening, PpNCED5 showed a consistently lower expression level than PpNCED1. During the post-harvest stage, gene expression of PpNCED1 declined, while PpNCED5 expression increased relative to PpNCED1 expression. Considering the dynamic process of ABA accumulation during fruit ripening and senescence in peach, this study indicates that both NCED genes cooperatively control ABA biosynthesis in peach fruits. Moreover, spatio-temporal expression and transcriptional response to hormone and abiotic stress suggested that there is functional divergence between PpNCED1 and PpNCED5 genes in peach. A carotenoid-rich callus system was used to verify the function of PpNCED1 and PpNCED5. In the transgenic callus system, both PpNCED1 and PpNCED5 isozymes promoted ABA biosynthesis, which likely accelerated cell senescence through activating ROS signals. The results from this study provide evidence supporting an ABA biosynthetic regulation process via the two NCED genes in peach fruit, and suggest a mechanism of ABA-induced fruit ripening and senescence.


Assuntos
Ácido Abscísico/metabolismo , Dioxigenases/fisiologia , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Prunus persica/metabolismo , Envelhecimento , Clonagem Molecular , Dioxigenases/genética , Dioxigenases/metabolismo , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Isoenzimas , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/enzimologia , Prunus persica/genética , Prunus persica/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma
12.
Int J Biol Macromol ; 171: 177-184, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33421465

RESUMO

A water-soluble polysaccharide (LCP-05) was isolated from the flowers of Leucosceptrum canum Smith. LCP-05 was an acidic polysaccharide with a molecular weight of approximately 8.9 kDa. Monosaccharide composition analysis indicated that LCP-05 was composed of Man, Rha, GlcA, GalA, Glc, Gal and Ara in a molar ratio of 0.83:1.68:0.33:2.15:1.00:1.45:1.22. The framework of LCP-05 was speculated to be a branched rhamnogalacturonan with the backbone consisting of α-1,2,4-linked Rhap and α-1,4-linked GalAp, and bearing branches at the O-4 position of the Rha residues. The side chains are terminated primarily with the Araf and Glcp residues. LCP-05 was found to be able to significantly induce the production of NO, IL-6, and TNF-α in RAW 264.7 cells, and to induce RAW 264.7 cell's suppressive effect on both cell growth and cell migration of 4 T1 mammary breast cancer cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Lamiaceae/química , Polissacarídeos/farmacologia , Animais , Sequência de Carboidratos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/patologia , Flores/química , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Interleucina-6/agonistas , Interleucina-6/imunologia , Camundongos , Peso Molecular , Monossacarídeos/química , Monossacarídeos/isolamento & purificação , Óxido Nítrico/agonistas , Óxido Nítrico/imunologia , Extratos Vegetais/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Células RAW 264.7 , Solubilidade , Fator de Necrose Tumoral alfa/agonistas , Fator de Necrose Tumoral alfa/imunologia
13.
Front Chem ; 8: 522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850614

RESUMO

In this study, thirteen new pyridylpyrazolamide derivatives containing pyrimidine motifs were synthesized via six-step reactions. Bioassay results showed that some of the synthesized compounds revealed good antifungal properties against Sclerotinia sclerotiorum, Phytophthora infestans, Thanatephorus cucumeris, Gibberella zeae, Fusarium oxysporum, Cytospora mandshurica, Botryosphaeria dothidea, and Phompsis sp. at 50 µg/mL, which were similar to those of Kresoxim-methyl or Pyrimethanil. Meanwhile, bioassay results indicated that the synthesized compounds showed a certain insecticidal activity against Spodoptera litura, Mythimna separata, Pyrausta nubilalis, Tetranychus urticae, Rhopalosiphum maidis, and Nilaparvata lugens at 200 µg/mL, which was lower than that of Chlorantraniliprole. To the best of our knowledge, this study is the first report on the antifungal and insecticidal activities of pyridylpyrazol amide derivatives containing a pyrimidine moiety.

14.
Nucleic Acids Res ; 44(13): 6363-76, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27298259

RESUMO

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding.


Assuntos
Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Motivos AT-Hook/genética , Cromátides/genética , Cromátides/ultraestrutura , Proteínas de Ligação a DNA/genética , Humanos , Microscopia de Força Atômica , Mitose/genética , Proteínas Nucleares/metabolismo , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo
15.
Int J Clin Exp Med ; 8(3): 4515-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064377

RESUMO

The aim of the study is to investigate the feasibility of pre-operative autologous blood donation (PABD) self-transfusion on the postpartum recovery and the endocrine in lying-in women. The PABD is carried out on 70 pregnant women who have high risk of postpartum hemorrhage. Those 70 subjects were divided into three groups: 33 cases of PABD self-transfusion during the Cesarean section; 16 cases of PABD self-transfusion as a physiological means and 21 cases without transfusion. Serum levels of Estradiol (E2), Progesterone (P), Prolactin (PRL) hormone are evaluated 48 hours before and after labor; Postpartum colostrum timing, milk yield, short term and long term uterine contraction are observed among the cases. No significance were observed among the three groups on E2, P, PRL hormone 48 hours before and after labor. The PRL concentration in PABD self-transfusion group is higher than that in the group without self-transfusion 48 hours after labor. Using different PABD self-transfusion strategies, significant difference of the initial milk yield time were observed in the three groups (F=6.035 P=0.004), but the milk yield is no significant different on second day and third day. The self-transfusion of PABD has little influence on uterine contraction. For the women who underwent Cesarean Section, the PABD self-transfusion is conducive to the increase of PRL level. The PABD self-transfusion advances the commencement time of milk yield, while with little effect on neither milk yield volume nor uterine contraction.

16.
BMC Plant Biol ; 15: 27, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644332

RESUMO

BACKGROUND: Carotenoids are indispensable plant secondary metabolites that are involved in photosynthesis, antioxidation, and phytohormone biosynthesis. Carotenoids are likely involved in other biological functions that have yet to be discovered. In this study, we integrated genomic, biochemical, and cellular studies to gain deep insight into carotenoid-related biological processes in citrus calli overexpressing CrtB (phytoene synthase from Pantoea agglomerans). Fortunella hindsii Swingle (a citrus relative) and Malus hupehensis (a wild apple) calli were also utilized as supporting systems to investigate the effect of altered carotenoid accumulation on carotenoid-related biological processes. RESULTS: Transcriptomic analysis provided deep insight into the carotenoid-related biological processes of redox status, starch metabolism, and flavonoid/anthocyanin accumulation. By applying biochemical and cytological analyses, we determined that the altered redox status was associated with variations in O2 (-) and H2O2 levels. We also ascertained a decline in starch accumulation in carotenoid-rich calli. Furthermore, via an extensive cellular investigation of the newly constructed CrtB overexpressing Fortunella hindsii Swingle, we demonstrated that starch level reducation occurred in parallel with significant carotenoid accumulation. Moreover, studying anthocyanin-rich Malus hupehensis calli showed a negative effect of carotenoids on anthocyanin accumulation. CONCLUSIONS: In citrus, altered carotenoid accumulation resulted in dramatic effects on metabolic processes involved in redox modification, starch degradation, and flavonoid/anthocyanin biosynthesis. These findings provided new perspectives to understand the biological importance of carotenogenesis and of the developmental processes associated with the nutritional and sensory qualities of agricultural products that accumulate carotenoids.


Assuntos
Antocianinas/biossíntese , Carotenoides/metabolismo , Citrus/química , Flavonoides/biossíntese , Amido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carotenoides/genética , Citrus/enzimologia , Citrus/genética , Citrus/ultraestrutura , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Malus/química , Malus/enzimologia , Malus/genética , Malus/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Oxirredução , Pantoea/fisiologia , Rutaceae/química , Rutaceae/enzimologia , Rutaceae/genética , Rutaceae/ultraestrutura , Análise de Sequência de DNA
17.
Biochim Biophys Acta ; 1850(2): 318-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25316290

RESUMO

BACKGROUND: Cytochrome bd oxidase, existing widely in bacteria, produces a proton motive force by the vectorial charge transfer of protons and more importantly, endows bacteria with a number of vitally important physiological functions, such as enhancing tolerance to various stresses. Although extensively studied as a CydA-CydB two-subunit complex for decades, the complex in certain groups of bacteria is recently found to in fact consist of an additional subunit, which is functionally essential. METHODS: We investigated the assembly of the CydA-CydB complex using BiFC. We investigated the function of CydX using mutational analysis. RESULTS: CydX, a 38-amino-acid inner-membrane protein, is associated with the CydA-CydB complex in Shewanella oneidensis, a facultative anaerobe renowned for its respiratory versatility. It is clear that CydX is neither required for the in vivo assembly of the CydA-CydB complex nor relies on the complex for its translocation and integration into the membrane. The N-terminal segment (1-25 amino acid residues) and short periplasmic overhang of CydX, with respect to functionality, are important whereas the remaining C-terminal segment is rather flexible. CONCLUSION: Based on these findings, we postulate that CydX may function by positioning and stabilizing the prosthetic hemes, especially heme d in the CydA-CydB complex although a role of participating in catalytic reaction is not excluded. GENERAL SIGNIFICANCE: The work provides novel insights into our understanding of the small subunit of the cytochrome bd oxidase.


Assuntos
Proteínas de Bactérias/metabolismo , Citocromos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Proteínas de Membrana/metabolismo , Shewanella/enzimologia , Proteínas de Bactérias/genética , Citocromos/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Heme/genética , Proteínas de Membrana/genética , Shewanella/genética
18.
Biochim Biophys Acta ; 1830(11): 5248-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911985

RESUMO

BACKGROUND: Bacteria adopt a variety of lifestyles in their natural habitats and can alternate among different lifestyles in response to environmental changes. At high cell densities, bacteria can form extracellular matrix encased cell population on submerged tangible surfaces (biofilms), or at the air-liquid interface (pellicles). Compared to biofilm, pellicle lifestyle allows for better oxygen access, but is metabolically more costly to maintain. Further understanding of pellicle formation and environmental cues that influence cellular choices between these lifestyles will definitely improve our appreciation of bacterial interaction with their environments. METHODS: Shewanella oneidensis cells were cultured in 24-well plates with supplementation of varied divalent cations, and pellicles formed under such conditions were evaluated. Mutants defective in respiration of divalent cations were used to further characterize and confirm unique impacts of iron. RESULTS AND CONCLUSIONS: Small amount of Fe(2+) was essential for pellicle formation, but presence of over-abundant iron (0.3mM Fe(2+) or Fe(3+)) led to pellicle disassociation without impairing growth. Such impacts were found due to S. oneidensis-mediated formation of insoluble alternative electron acceptors (i.e., Fe3O4) under physiologically relevant conditions. Furthermore, we demonstrated that cells preferred a lifestyle of forming biofilm and respiring on such insoluble electron acceptors under tested conditions, even to living in pellicles. GENERAL SIGNIFICANCE: Our finding suggests that bacterial lifestyle choice involves balanced evaluation of multiple aspects of environmental conditions, and yet-to-be-characterized signaling mechanism is very likely underlying such processes.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Biofilmes/crescimento & desenvolvimento , Cátions Bivalentes/metabolismo , Magnésio/metabolismo , Oxigênio/metabolismo
19.
ISME J ; 7(9): 1752-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23575370

RESUMO

Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Microbiologia Ambiental , Regulação Bacteriana da Expressão Gênica , Oxirredutases/genética , Oxirredutases/metabolismo , Shewanella/enzimologia , Aerobiose/genética , Sequência de Bases , Citocromos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxigênio/metabolismo , Shewanella/genética , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo
20.
PLoS One ; 8(4): e62064, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593508

RESUMO

Shewanella oneidensis exhibits a remarkable versatility in respiration, which largely relies on its various respiratory pathways. Most of these pathways are composed of secretory terminal reductases and multiple associated electron transport proteins that contain cofactors such as Fe-S, molybdopterin, and NiFe. The majority of these cofactors are inserted enzymatically in the cytoplasm, and thus are substrates of the twin-arginine translocation (Tat) protein export system, which transports fully folded proteins. Using genomic array footprinting, we discovered that loss of TatA or TatC caused a reduction in the growth rate of S. oneidensis under aerobic conditions. Mutational analysis of the predicted Tat substrates revealed that PetA, the Rieske Fe-S subunit of the ubiquinol-cytochrome c reductase, predominantly dictates the aerobic growth defect of tat mutants in S. oneidensis. In addition, evidence is presented that the signal sequence in PetA appears to be resistant to cleavage after the protein is inserted into the cytoplasmic membrane.


Assuntos
Sistemas de Secreção Bacterianos/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana Transportadoras/genética , Shewanella/crescimento & desenvolvimento , Shewanella/genética , Western Blotting , Biologia Computacional , Complexo III da Cadeia de Transporte de Elétrons/genética , Eletroforese em Gel de Poliacrilamida , Fluorescência , Componentes do Gene , Microscopia Confocal , Mutagênese Sítio-Dirigida , Mutação/genética , Consumo de Oxigênio/fisiologia , Shewanella/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...