Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 240(3): 477-499, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36522481

RESUMO

RATIONALE: The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory information is active or passive. OBJECTIVES: We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative learning. METHODS: Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encoding. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional trial-averaging techniques. RESULTS: We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells. CONCLUSION: We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying information about the salience of cues to the amygdala, but these signals are not valence-specified.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Tálamo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Nível de Alerta
2.
Biomed J Sci Tech Res ; 20(3): 15017-15022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565696

RESUMO

A blockchain is a system for storing and sharing information that is secure because of its transparency. Each block in the chain is both its own independent unit containing its own information, and a dependent link in the collective chain, and this duality creates a network regulated by participants who store and share the information, rather than a third party. Blockchain has many applications in healthcare, and can improve mobile health applications, monitoring devices, sharing and storing of electronic medical records, clinical trial data, and insurance information storage. Research about blockchain and healthcare is currently limited, but blockchain is on the brink of transforming the healthcare system; through its decentralized principles, blockchain can improve accessibility and security of patient information, and can therefore overturn the healthcare hierarchy and build a new system in which patients manage their own care.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31080696

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of senile dementia. However, its pathological mechanisms are not fully understood. In order to comprehend AD pathological mechanisms, researchers employed AD-related DNA microarray data and diverse computational algorithms. More efficient computational algorithms are needed to process DNA microarray data for identifying AD-related candidate genes. METHODS: In this paper, we propose a specific algorithm that is based on the following observation: When an acrobat walks along a steel-wire, his/her body must have some swing; if the swing can be controlled, then the acrobat can maintain the body balance. Otherwise, the acrobat will fall. Based on this simple idea, we have designed a simple, yet practical, algorithm termed as the Amplitude Deviation Algorithm (ADA). Deviation, overall deviation, deviation amplitude, and 3δ are introduced to characterize ADA. RESULTS: 52 candidate genes for AD have been identified via ADA. The implications for some of the AD candidate genes in AD pathogenesis have been discussed. CONCLUSIONS: Through the analysis of these AD candidate genes, we believe that AD pathogenesis may be related to the abnormality of signal transduction (AGTR1 and PTAFR), the decrease in protein transport capacity (COL5A2 (221729_at), COL5A2 (221730_at), COL4A1), the impairment of axon repair (CNR1), and the intracellular calcium dyshomeostasis (CACNB2, CACNA1E). However, their potential implication for AD pathology should be further validated by wet lab experiments as they were only identified by computation using ADA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...