Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7189, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938565

RESUMO

In the latter half of the twentieth century, a significant climate phenomenon "diurnal asymmetric warming" emerged, wherein global land surface temperatures increased more rapidly during the night than during the day. However, recent episodes of global brightening and regional droughts and heatwaves have brought notable alterations to this asymmetric warming trend. Here, we re-evaluate sub-diurnal temperature patterns, revealing a substantial increase in the warming rates of daily maximum temperatures (Tmax), while daily minimum temperatures have remained relatively stable. This shift has resulted in a reversal of the diurnal warming trend, expanding the diurnal temperature range over recent decades. The intensified Tmax warming is attributed to a widespread reduction in cloud cover, which has led to increased solar irradiance at the surface. Our findings underscore the urgent need for enhanced scrutiny of recent temperature trends and their implications for the wider earth system.

2.
Sci Adv ; 9(32): eadf3166, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556542

RESUMO

The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity's response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle's response to global warming.


Assuntos
Clima , Ecossistema , Pressão de Vapor , Estações do Ano , Solo
3.
Environ Pollut ; 327: 121509, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967005

RESUMO

Ground-level fine particulate matter (PM2.5) and ozone (O3) are air pollutants that can pose severe health risks. Surface PM2.5 and O3 concentrations can be monitored from satellites, but most retrieval methods retrieve PM2.5 or O3 separately and disregard the shared information between the two air pollutants, for example due to common emission sources. Using surface observations across China spanning 2014-2021, we found a strong relationship between PM2.5 and O3 with distinct spatiotemporal characteristics. Thus, in this study, we propose a new deep learning model called the Simultaneous Ozone and PM2.5 inversion deep neural Network (SOPiNet), which allows for daily real-time monitoring and full coverage of PM2.5 and O3 simultaneously at a spatial resolution of 5 km. SOPiNet employs the multi-head attention mechanism to better capture the temporal variations in PM2.5 and O3 based on previous days' conditions. Applying SOPiNet to MODIS data over China in 2022, using 2019-2021 to construct the network, we found that simultaneous retrievals of PM2.5 and O3 improved the performance compared with retrieving them independently: the temporal R2 increased from 0.66 to 0.72 for PM2.5, and from 0.79 to 0.82 for O3. The results suggest that near-real time satellite-based air quality monitoring can be improved by simultaneous retrieval of different but related pollutants. The codes of SOPiNet and its user guide are freely available online at https://github.com/RegiusQuant/ESIDLM.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aprendizado Profundo , Ozônio , Ozônio/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , China
4.
Natl Sci Rev ; 9(4): nwab150, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386922

RESUMO

Interannual variability of the terrestrial ecosystem carbon sink is substantially regulated by various environmental variables and highly dominates the interannual variation of atmospheric carbon dioxide (CO2) concentrations. Thus, it is necessary to determine dominating factors affecting the interannual variability of the carbon sink to improve our capability of predicting future terrestrial carbon sinks. Using global datasets derived from machine-learning methods and process-based ecosystem models, this study reveals that the interannual variability of the atmospheric vapor pressure deficit (VPD) was significantly negatively correlated with net ecosystem production (NEP) and substantially impacted the interannual variability of the atmospheric CO2 growth rate (CGR). Further analyses found widespread constraints of VPD interannual variability on terrestrial gross primary production (GPP), causing VPD to impact NEP and CGR. Partial correlation analysis confirms the persistent and widespread impacts of VPD on terrestrial carbon sinks compared to other environmental variables. Current Earth system models underestimate the interannual variability in VPD and its impacts on GPP and NEP. Our results highlight the importance of VPD for terrestrial carbon sinks in assessing ecosystems' responses to future climate conditions.

5.
Nat Commun ; 13(1): 1865, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388018

RESUMO

Enhanced warming in the Arctic (Arctic amplification, AA) in the last decades has been linked to several factors including sea ice and the Atlantic Multidecadal Oscillation (AMO). However, how these factors contributed to AA variations in a long-term perspective remains unclear. By reconstructing a millennial AA index combining climate model simulations with recently available proxy data, this work determines the important influences of the AMO and anthropogenic greenhouse gas forcing on AA variations in the last millennium, leading to identification of a significant downward trend of AA on top of a sustained strong AMO modulation at the multidecadal scales. The decreased AA during the industrial era was strongly associated with the anthropogenic forcing, proving the emerging role of the forcing in reducing the AA strength.


Assuntos
Clima , Camada de Gelo , Regiões Árticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...