Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Life Sci ; 347: 122682, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38702025

RESUMO

Thyroid cancer is one of the most common primary endocrine malignancies worldwide, and papillary thyroid carcinoma (PTC) is the predominant histological type observed therein. Although PTC has been studied extensively, our understanding of the altered metabolism and metabolic profile of PTC tumors is limited. We identified that the content of metabolite homogentisic acid (HGA) in PTC tissues was lower than that in adjacent non-cancerous tissues. We evaluated the potential of HGA as a novel molecular marker in the diagnosis of PTC tumors, as well as its ability to indicate the degree of malignancy. Studies have further shown that HGA contributes to reactive oxygen species (ROS) associated oxidative stress, leading to toxicity and inhibition of proliferation. In addition, HGA caused an increase in p21 expression levels in PTC cells and induced G1 arrest. Moreover, we found that the low HGA content in PTC tumors was due to the low expression levels of tyrosine aminotransferase (TAT) and p-hydroxyphenylpyruvate hydroxylase (HPD), which catalyze the conversion of tyrosine to HGA. The low expression levels of TAT and HPD are strongly associated with a higher probability of PTC tumor invasion and metastasis. Our study demonstrates that HGA could be used to diagnose PTC and provides mechanisms linking altered HGA levels to the biological behavior of PTC tumors.


Assuntos
Pontos de Checagem do Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Ácido Homogentísico , Espécies Reativas de Oxigênio , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Ácido Homogentísico/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Estresse Oxidativo , Carcinoma Papilar/patologia , Carcinoma Papilar/metabolismo , Adulto
2.
Biomicrofluidics ; 18(2): 021506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38659429

RESUMO

Microvalves play a crucial role in manipulating fluid states within a microfluidic system and are finding widespread applications in fields such as biology, medicine, and environmental preservation. Leveraging the characteristics and features of microvalves enables the realization of various complicated microfluidic functions. Continuous advancement in the manufacturing process contributes to more flexible control modes for passive microvalves. As a consequence, these valves are progressively shrinking in size while simultaneously improving in precision and stability. Although active microvalves have the benefits of low leakage, rapid response time, and wide adaptability range, the energy supply system limits the size and even their applicability in integration and miniaturization. In comparison, passive microvalves have the advantage of relying solely on the fluid flow or fluid driving pressure to control the open/close of fluid flow over active microvalves, in spite of having slightly reduced control accuracy. Their self-sustaining feature is highly consistent with the need for assembly and miniaturization in the point-of-care testing technology. Hence, these valves have attracted significant interest for research and application purposes. This review focuses on the recent literature on passive microvalves and details existing passive microvalves from three different aspects: operating principle, processing method, and applications. This work aims to increase the visibility of passive microvalves among researchers and enhance their comprehension by classifying them according to the aforementioned three aspects, facilitating the practical applications and further developments of passive microvalves. Additionally, this paper is expected to serve as a comprehensive and systematic reference for interdisciplinary researchers that intend to design related microfluidic systems.

3.
J Nanobiotechnology ; 22(1): 187, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632623

RESUMO

Pathological conditions linked to shear stress have been identified in hematological diseases, cardiovascular diseases, and cancer. These conditions often exhibit significantly elevated shear stress levels, surpassing 1000 dyn/cm2 in severely stenotic arteries. Heightened shear stress can induce mechanical harm to endothelial cells, potentially leading to bleeding and fatal consequences. However, current technology still grapples with limitations, including inadequate flexibility in simulating bodily shear stress environments, limited range of shear stress generation, and spatial and temporal adaptability. Consequently, a comprehensive understanding of the mechanisms underlying the impact of shear stress on physiological and pathological conditions, like thrombosis, remains inadequate. To address these limitations, this study presents a microfluidic-based shear stress generation chip as a proposed solution. The chip achieves a substantial 929-fold variation in shear stress solely by adjusting the degree of constriction in branch channels after PDMS fabrication. Experiments demonstrated that a rapid increase in shear stress up to 1000 dyn/cm2 significantly detached 88.2% cells from the substrate. Long-term exposure (24 h) to shear stress levels below 8.3 dyn/cm2 did not significantly impact cell growth. Furthermore, cells exposed to shear stress levels equal to or greater than 8.3 dyn/cm2 exhibited significant alterations in aspect ratio and orientation, following a normal distribution. This microfluidic chip provides a reliable tool for investigating cellular responses to the wide-ranging shear stress existing in both physiological and pathological flow conditions.


Assuntos
Microfluídica , Trombose , Humanos , Células Endoteliais , Linhagem Celular , Trombose/patologia , Estresse Mecânico
4.
ACS Sens ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644577

RESUMO

A core-shell nanostructure of gold nanoparticles@covalent organic framework (COF) loaded with palladium nanoparticles (AuNPs@COF-PdNPs) was designed for the rapid monitoring of catalytic reactions with surface-enhanced Raman spectroscopy (SERS). The nanostructure was prepared by coating the COF layer on AuNPs and then in situ synthesizing PdNPs within the COF shell. With the respective SERS activity and catalytic performance of the AuNP core and COF-PdNPs shell, the nanostructure can be directly used in the SERS study of the catalytic reaction processes. It was shown that the confinement effect of COF resulted in the high dispersity of PdNPs and outstanding catalytic activity of AuNPs@COF-PdNPs, thus improving the reaction rate constant of the AuNPs@COF-PdNPs-catalyzed hydrogenation reduction by 10 times higher than that obtained with Au/Pd NPs. In addition, the COF layer can serve as a protective shell to make AuNPs@COF-PdNPs possess excellent reusability. Moreover, the loading of PdNPs within the COF layer was found to be in favor of avoiding intermediate products to achieve a high total conversion rate. AuNPs@COF-PdNPs also showed great catalytic activities toward the Suzuki-Miyaura coupling reaction. Taken together, the proposed core-shell nanostructure has great potential in monitoring and exploring catalytic processes and interfacial reactions.

5.
Heliyon ; 10(7): e28480, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586361

RESUMO

Background: To analyze the characteristics of fecal microbiota disturbance in the intensive care unit (ICU) patients with sepsis and the correlation with related clinical indicators. Methods: This study included 31 patients with sepsis admitted to the emergency ICU ward between September 2019 and December 2021. They were divided into Group without septic shock (ND_NS group, 7 cases) and Group with septic shock (ND_S group, 24 cases) according to the presence or absence of septic shock. Furthermore, we divided these 31 sepsis patients into Clinical Improvement group (21 cases) and Death or DAMA group (10 cases) based on clinical outcome, 15 cases of Physical Examiner recruited in the same period were included as control group: ND_HC group (15 cases). The fecal samples of the patients with sepsis within 24 h of admission and random fecal samples of the control group were collected and analyzed by 16S rDNA gene sequencing used for the analysis of fecal microbiota. At the same time, the relevant clinical data of these patients with sepsis were also collected for analysis. Results: There were 15 cases with drug-resistant bacteria in the ND_S group and only 2 cases in the ND_NS group (P = 0.015). There were significant differences in APACHE II score, length of ICU stay, lactate level, and oxygenation index of patients between the Death or DAMA group and Clinical Improvement group (all P < 0.05). For phylum level, the abundance of Firmicutes, Actinobacteria, and Bacteroidetes decreased in the ND group compared with the ND_HC group, while the abundance of Proteobacteria increased (P < 0.05). For genus level, the relative abundance of Escherichia-Shigella and Klebsiella were significantly increased in the ND group compared with the ND_HC group (P < 0.05). The top six genera in relative abundance in the ND_S group were Escherichia-Shigella, Enterococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Klebsiella. Compared with the Clinical Improvement group, the relative abundance of Escherichia-Shigella and Klebsiella in the Death or DAMA group showed an increasing trend with no significant significance, while the relative abundance of Enterococcus and Faecalibacterium decreased in the Death or DAMA group (P < 0.05). Alpha diversity analysis showed that compared with the ND_HC group, the alpha diversity of the fecal microbiota in the ND group decreased. There were significant differences in the Observed_species index, Chao1 index, and ACE index of patients between the ND_HC group and ND group (all P < 0.05). Moreover, compared with the ND_NS group, the Alpha diversity of the ND_S group was more abundant. PCoA analysis showed significant differences in microbial community structure between the ND group and ND_HC group (P = 0.001). There also were significant differences in microbial community structure between the ND_S group and ND_NS group (P = 0.008). LEfSe analysis showed that compared with the ND_HC group, there were significant differences in the species of the ND group, including Enterobacteriaceae, Escherichia-Shigella, Enterococcus, Elizabethkingia, and Family_XIII_AD3011_group. Conclusions: ICU patients with sepsis suffered intestinal microecological disturbances with significantly decreased abundance of fecal microbiota, diversity, and beneficial symbiotic bacteria. For these patients, the ratio of pathogenic bacteria, including Escherichia-Shigella and Klebsiella increased and became the main bacterial genus in some samples. Moreover, the increasing trend of these two pathogenic bacteria may be correlated with the development of septic shock and the risk of death in patients with sepsis.

6.
Talanta ; 274: 126010, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569372

RESUMO

Intracellular glucose detection is crucial due to its pivotal role in metabolism and various physiological processes. Precise glucose monitoring holds significance in diabetes management, metabolic studies, and biotechnological applications. In this study, we developed an innovative and expedient cell-permeable nanoreactor for intracellular glucose based on surface-enhanced Raman scattering (SERS). The nanoreactor was designed with gold nanoparticles (AuNPs), which were engineered with glucose oxide (GOx) and a H2O2-responsive Raman reporter 2-mercaptohydroquinone (2-MHQ). The interaction between 2-MHQ and H2O2 generated by glucose and GOx could simultaneously induce the appearance in the peak at 985 cm-1. Our results showed excellent performance in detecting glucose within the concentration range from 0.1 µM to 10 mM, with a low detection limitation of 14.72 nM. In addition, the glucose distribution in single HeLa cells was evaluated by real time SERS mapping. By combining noble metal particles and natural oxidases, the nanoreactor possesses both Raman activity and enzymatic functionality, thus enables sensitive glucose detection and facilitates imaging at a single cell level, which offers an insightful monitoring of cellular processes.


Assuntos
Glucose , Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Células HeLa , Ouro/química , Nanopartículas Metálicas/química , Glucose/análise , Glucose/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo
7.
Lab Chip ; 24(4): 810-818, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38224458

RESUMO

This paper reports a spin-disc paper-based device with 10 individual detection units containing electromagnetic modules controlling the sample incubation time before chemiluminescence (CL) signal detection. After the sample was added to the top paper chip and incubated with the enzyme, the electromagnet was turned off to allow contact between the top and bottom paper. The H2O2 generated by the sample flowed vertically to the bottom paper and initiated the oxidase of the luminol to generate the CL signal. After one detection the disc was automatically rotated to the next position to repeat the above detection. The advantage of using the device over the lateral flow and the in situ detection was firstly proved using the detection of H2O2 and the glucose/lactate sample with 5 minute incubation. The CL intensity was increased 300 times/1000 times as the glucose/lactate was incubated for 5 minutes compared to the non-incubated samples. Afterward, the device was employed to separately detect glucose and lactate diluted in PBS, artificial sweat, artificial saliva, and fresh cell culture media. Finally, the device was employed to detect the glucose and lactate in the media collected over the 24 hour culture of PC3 cells. The uptake and production rates of glucose and lactate were correspondingly determined as 0.328 ± 0.015 pmol h-1 per cell and 1.254 ± 0.053 pmol h-1 per cell, respectively. The reported device has wide application potential due to its capabilities in automatic detection of multiple samples with very high sensitivity and small sample volume (down to 0.5 µL).


Assuntos
Glucose , Ácido Láctico , Luminescência , Peróxido de Hidrogênio , Luminol , Medições Luminescentes
8.
Biosens Bioelectron ; 250: 116054, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295581

RESUMO

Hydrogen sulfide (H2S), an important gas signal molecule, participates in intercellular signal transmission and plays a considerable role in physiology and pathology. However, in-situ monitoring of H2S level during the processes of material transport between cells remains considerably challenging. Herein, a cell membrane-targeted surface-enhanced Raman scattering (SERS) nanoprobe was designed to quantitatively detect H2S secreted from living cells. The nanoprobes were fabricated by assembling cholesterol-functionalized DNA strands and dithiobis(phenylazide) (DTBPA) molecules on core-shell gold nanostars embedded with 4-mercaptoacetonitrile (4-MBN) (AuNPs@4-MBN@Au). Thus, three functions including cell-membrane targeted via cholesterol, internal standard calibration, and responsiveness to H2S through reduction of azide group in DTBPA molecules were integrated into the nanoprobes. In addition, the nanoprobes can quickly respond to H2S within 90 s and sensitively, selectively, and reliably detect H2S with a limit of detection as low as 37 nM due to internal standard-assisted calibration and reaction specificity. Moreover, the nanoprobes can effectively target on cell membrane and realize SERS visualization of dynamic H2S released from HeLa cells. By employing the proposed approach, an intriguing phenomenon was observed: the other two major endogenous gas transmitters, carbon monoxide (CO) and nitric oxide (NO), exhibited opposite effect on H2S production in living cells stimulated by related gas release molecules. In particular, the introduction of CO inhibited the generation of H2S in HeLa cells, while NO promoted its output. Thus, the nanoprobes can provide a robust method for investigating H2S-related extracellular metabolism and intercellular signaling transmission.


Assuntos
Técnicas Biossensoriais , Sulfeto de Hidrogênio , Nanopartículas Metálicas , Humanos , Sulfeto de Hidrogênio/metabolismo , Células HeLa , Análise Espectral Raman/métodos , Ouro , Óxido Nítrico , Membrana Celular/metabolismo , Colesterol
9.
Anal Chem ; 96(1): 347-354, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153415

RESUMO

Sorting single cells from a population was of critical importance in areas such as cell line development and cell therapy. Image-based sorting is becoming a promising technique for the nonlabeling isolation of cells due to the capability of providing the details of cell morphology. This study reported the focusing of cells using microwell arrays and the following automatic size sorting based on the real-time recognition of cells. The simulation first demonstrated the converged streamlines to the symmetrical plane contributed to the focusing effect. Then, the influence of connecting microchannel, flowing length, particle size, and the sample flow rate on the focusing effect was experimentally analyzed. Both microspheres and cells could be aligned in a straight line at the Reynolds number (Re) of 0.027-0.187 and 0.027-0.08, respectively. The connecting channel was proved to drastically improve the focusing performance. Afterward, a tapered microwell array was utilized to focus sphere/cell spreading in a wide channel to a straight line. Finally, a custom algorithm was employed to identify and sort the size of microspheres/K562 cells with a throughput of 1 event/s and an accuracy of 97.8/97.1%. The proposed technique aligned cells to a straight line at low Reynolds numbers and greatly facilitated the image-activated sorting without the need for a high-speed camera or flow control components with high frequency. Therefore, it is of enormous application potential in the field of nonlabeled separation of single cells.


Assuntos
Tamanho da Partícula , Humanos , Microesferas , Células K562 , Simulação por Computador
10.
Artigo em Inglês | MEDLINE | ID: mdl-38083301

RESUMO

The mechanical properties of cells are closely related to their physiological states and functions. Due to the limitations of conventional cell elasticity measurement technologies such as low throughput, cell-invasiveness, and high cost, microfluidic systems are emerging as powerful tools for high-throughput cell mechanical property studies. This paper introduces a microfluidic system to automatically measure the elastic modulus of single cells in real time. The system integrated a microfluidic chip with a microchannel for cell constriction, a pressure pump, a precision differential pressure sensor, and a program for online analysis of cell deformation. The program used a fast U-net to segment cell images and measure protrusion length during cell deformation. Subsequently, the cell elasticity was determined in real-time based on the deformation and required pressure using the power law rheological model. Finally, Young's modulus of BMSCs, Huh-7 cells, EMSCs, and K562 cells was measured as 25.13 ± 15.19 Pa, 69.74 ± 92.01 Pa, 54.50 ± 59.31 Pa and 58.43 ± 27.27 Pa, respectively. The microfluidic system has significant application potential in the automated evaluation of cell mechanical properties.Clinical Relevance-The technique in this paper may be used for the automatic and high throughput study of the stiffness of cells, such as stem cells and cancer cells. The stiffness data may contribute to stem cell therapy and cancer research.


Assuntos
Microfluídica , Elasticidade , Módulo de Elasticidade , Reologia
11.
Cell Death Dis ; 14(10): 653, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803002

RESUMO

Tamoxifen-based endocrine therapy remains a major adjuvant therapy for estrogen receptor (ER)-positive breast cancer (BC). However, many patients develop tamoxifen resistance, which results in recurrence and poor prognosis. Herein, we show that fatty acid oxidation (FAO) was activated in tamoxifen-resistant (TamR) ER-positive BC cells by performing bioinformatic and functional studies. We also reveal that CPT1A, the rate-limiting enzyme of FAO, was significantly overexpressed and that its enzymatic activity was enhanced in TamR cells. Mechanistically, the transcription factor c-Jun was activated by JNK kinase-mediated phosphorylation. Activated c-Jun bound to the TRE motif in the CPT1A promoter to drive CPT1A transcription and recruited CBP/P300 to chromatin, catalysing histone H3K27 acetylation to increase chromatin accessibility, which ensured more effective transcription of CPT1A and an increase in the FAO rate, eliminating the cytotoxic effects of tamoxifen in ER-positive BC cells. Pharmacologically, inhibiting CPT1A enzymatic activity with the CPT1 inhibitor etomoxir or blocking c-Jun phosphorylation with a JNK inhibitor restored the tamoxifen sensitivity of TamR cells. Clinically, high levels of phosphorylated c-Jun and CPT1A were observed in ER-positive BC tissues in patients with recurrence after tamoxifen therapy and were associated with poor survival. These results indicate that the assessment and targeting of the JNK/c-Jun-CPT1A-FAO axis will provide promising insights for clinical management, increased tamoxifen responses and improved outcomes for ER-positive BC patients.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Ácidos Graxos/metabolismo , Cromatina , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Regulação Neoplásica da Expressão Gênica
12.
Angew Chem Int Ed Engl ; 62(44): e202311002, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37714815

RESUMO

Artificially performing chemical reactions in living biosystems to attain various physiological aims remains an intriguing but very challenging task. In this study, the Schiff base reaction was conducted in cells using Sc(OTf)3 as a catalyst, enabling the in situ synthesis of a hollow covalent organic polymer (HCOP) without external stimuli. The reversible Schiff base reaction mediated intracellular Oswald ripening endows the HCOP with a spherical, hollow porous structure and a large specific surface area. The intracellularly generated HCOP reduced cellular motility by restraining actin polymerization, which consequently induced mitochondrial deactivation, apoptosis, and necroptosis. The presented intracellular synthesis system inspired by the Schiff base reaction has strong potential to regulate cell fate and biological functions, opening up a new strategic possibility for intervening in cellular behavior.


Assuntos
Polímeros , Bases de Schiff , Bases de Schiff/química
13.
Anal Chem ; 95(34): 12875-12883, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581609

RESUMO

Single-cell analysis has important implications for understanding the specificity of cells. To analyze the specificity of rare cells in complex blood and biopsy samples, selective lysis of target single cells is pivotal but difficult. Microfluidics, particularly droplet microfluidics, has emerged as a promising tool for single-cell analysis. In this paper, we present a smart droplet microfluidic system that allows for single-cell selective lysis and real-time sorting, aided by the techniques of microinjection and image recognition. A custom program evolved from Python is proposed for recognizing target droplets and single cells, which also coordinates the operation of various parts in a whole microfluidic system. We have systematically investigated the effects of voltage and injection pressure applied to the oil-water interface on droplet microinjection. An efficient and selective droplet injection scheme with image feedback has been demonstrated, with an efficiency increased dramatically from 2.5% to about 100%. Furthermore, we have proven that the cell lysis solution can be selectively injected into target single-cell droplets. Then these droplets are shifted into the sorting area, with an efficiency for single K562 cells reaching up to 73%. The system function is finally explored by introducing complex cell samples, namely, K562 cells and HUVECs, with a success rate of 75.2% in treating K562 cells as targets. This system enables automated single-cell selective lysis without the need for manual handling and sheds new light on the cooperation with other detection techniques for a broad range of single-cell analysis.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Microinjeções , Hidrolases , Análise de Célula Única/métodos , Células K562 , Técnicas Analíticas Microfluídicas/métodos
14.
ACS Sens ; 8(9): 3555-3562, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607401

RESUMO

Oxidative stress is involved in various signaling pathways and serves a key role in inducing cell apoptosis. Therefore, it is significant to monitor oxidative stress upon drug release for the assessment of therapeutic effects in cancer cells. Herein, a glutathione (GSH)-responsive surface-enhanced Raman scattering (SERS) nanoplatform is proposed for ultra-sensitively monitoring the substance related with oxidative stress (hydrogen sulfide, H2S), depleting reactive sulfur species and releasing anticancer drugs to amplify oxidative stress for tumor apoptosis. The Au@Raman reporter@Ag (Au@M@Ag) nanoparticles, where a 4-mercaptobenzonitrile molecule as a Raman reporter was embedded between layers of gold and silver to obtain sensitive SERS response, were coated with a covalent organic framework (COF) shell to form a core-shell structure (Au@M@Ag@COFs) as the SERS nanoplatform. The COF shell loading doxorubicin (DOX) of Au@M@Ag@COFs exhibited the GSH-responsive degradation capacity to release DOX, and its Ag layer as the sensing agent was oxidized to Ag2S by H2S to result in its prominent changes in SERS signals with a low detection limit of 0.33 nM. Moreover, the releasing DOX can inhibit the generation of H2S to promote the production of reactive oxygen species, and the depletion of reactive sulfur species (GSH and H2S) in cancer cells can further enhance the oxidative stress to induce tumor apoptosis. Overall, the SERS strategy could provide a powerful tool to monitor the dynamic changes of oxidative stress during therapeutic processes in a tumor microenvironment.


Assuntos
Sulfeto de Hidrogênio , Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Microambiente Tumoral
15.
Micromachines (Basel) ; 14(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37421003

RESUMO

Cell metabolite detection is important for cell analysis. As a cellular metabolite, lactate and its detection play an important role in disease diagnosis, drug screening and clinical therapeutics. This paper reports a microfluidic chip integrated with a backflow prevention channel for cell culture and lactate detection. It can effectively realize the upstream and downstream separation of the culture chamber and the detection zone, and prevent the pollution of cells caused by the potential backflow of reagent and buffer solutions. Due to such a separation, it is possible to analyze the lactate concentration in the flow process without contamination of cells. With the information of residence time distribution of the microchannel networks and the detected time signal in the detection chamber, it is possible to calculate the lactate concentration as a function of time using the de-convolution method. We have further demonstrated the suitability of this detection method by measuring lactate production in human umbilical vein endothelial cells (HUVEC). The microfluidic chip presented here shows good stability in metabolite quick detection and can work continuously for more than a few days. It sheds new insights into pollution-free and high-sensitivity cell metabolism detection, showing broad application prospects in cell analysis, drug screening and disease diagnosis.

16.
Lab Chip ; 23(15): 3467-3478, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37427692

RESUMO

Analysis of single cells after elasticity measurement may construct a linkage between biophysics and other cellular properties, e.g., cell signaling and genetics. This paper reports a microfluidic technology integrating trapping, elasticity measurement, and printing of single cells based on the precise regulation of pressure across an array of U-shaped traps. Both numerical and theoretical analyses revealed that the positive and negative pressure drop across each trap correspondingly contributed to the capture and release of single cells. Afterward, microbeads were employed to demonstrate the capabilities in rapid capturing of single beads. As the printing pressure increased from 0.64 to 3.03 kPa, all beads were released from traps one by one and dispensed into individual wells with an efficiency of 96%. Cell experiments demonstrated that all traps captured K562 cells within 15.25 ± 7.63 seconds. The single-cell trapping efficiency (75.86-95.31%) was proportional to the sample flow rate. Based on the protrusion of each trapped cell and the relevant pressure drop, the stiffness of passages 8 and 46 K562 cells was respectively determined as 171.15 ± 73.35 Pa and 13 959 ± 6328 Pa. The former was consistent with previous studies and the latter was extremely elevated, owing to the cell property variation during a long culture period. Finally, the single cells with known elasticity were deterministically printed into well plates with an efficiency of 92.62%. This technology is a powerful tool for both continuous single cell dispensing and innovatively enabling the relation of cell mechanics to biophysical properties using traditional equipment.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microesferas , Elasticidade , Impressão Tridimensional
17.
Data Brief ; 48: 109278, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383767

RESUMO

A substantial proportion of more than 50% of breast cancer survivors, who remain undiagnosed with lymphedema, encounter a daily struggle with the presence of multiple and concomitant lymphedema associated symptoms (i.e., lymphedema symptoms). The-Optimal-Lymph-Flow (TOLF) program was developed based on physiological-cognitive-behavioral principles to educate breast cancer survivors on effective self-care strategies. Physiologically, TOLF program was designed to stimulate lymphatic system to enhance lymph flow, thereby alleviating lymphedema symptoms and mitigating the risk and severity of lymphedema. The dataset presented in this article was obtained from a randomized clinical trial (RCT) that assessed the preventive effects of the TOLF program in improving lymphedema symptom experience and optimizing lymph fluid status among breast cancer survivors who were at higher risk for lymphedema. Between January 2019 and June 2020, a RCT was conducted to recruit 92 eligible participants who were assigned randomly to either the TOLF group (intervention) or the arm mobility group (control). Demographic and clinical data were collected at baseline and updated over the study period. Outcome data were collected at baseline and three months after intervention. Study outcomes included lymphedema symptom experience (i.e., number, severity, distress of lymphedema symptoms, and impact on daily activities) and lymph fluid status. The Breast Cancer and Lymphedema Symptom Experience Index (BCLE-SEI) was utilized to assess lymphedema symptoms and circumferential arm measurement was utilized to estimate limb volume differences (a surrogate for lymph fluid status). The dataset based on the RCT allowed confirmation of positive effects of the TOLF intervention during early postoperative period. The dataset can be further utilized as a benchmark reference in clinical settings or experimental research to determine the effects of optimal lymphatic exercise dosage on lymphedema risk reduction and symptom alleviation as well as provide a basis for future research related to this topic.

18.
Biosens Bioelectron ; 234: 115325, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37148801

RESUMO

The abnormal change in the expression profile of multiple cancer biomarkers is closely related to tumor progression and therapeutic effect. Due to their low abundance in living cells and the limitations of existing imaging techniques, simultaneous imaging of multiple cancer biomarkers has remained a significant challenge. Here, we proposed a multi-modal imaging strategy to detect the correlated expression of multiple cancer biomarkers, MUC1, microRNA-21 (miRNA-21) and reactive oxygen (ROS) in living cells, based on a porous covalent organic framework (COF) wrapped gold nanoparticles (AuNPs) core-shell nanoprobe. The nanoprobe is functionalized with Cy5-labeled MUC1 aptamer, a ROS-responsive molecule (2-MHQ), and a miRNA-21-response hairpin DNA tagged by FITC as the reporters for different biomarkers. The target-specific recognition can induce the orthogonal molecular change of these reporters, producing fluorescence and Raman signals for imaging the expression profiles of membrane MUC1 (red fluorescence channel), intracellular miRNA-21 (green fluorescence channel), and intracellular ROS (SERS channel). We further demonstrate the capability of the cooperative expression of these biomarkers, along with the activation of NF-κB pathway. Our research provides a robust platform for imaging multiple cancer biomarkers, with broad potential applications in cancer clinical diagnosis and drug discovery.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Neoplasias , Humanos , Biomarcadores Tumorais , Ouro , Espécies Reativas de Oxigênio , Técnicas Biossensoriais/métodos , Neoplasias/diagnóstico , MicroRNAs/genética , Análise Espectral Raman
19.
PLoS One ; 18(5): e0285772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192209

RESUMO

INTRODUCTION: The primary aim is to determine the factors associated with breast cancer-related lymphedema and to identify new associated factors for the recurrence of breast cancer and depression. The secondary objective is to investigate the incidence of breast cancer-related events (breast cancer-related lymphedema, recurrence of breast cancer, and depression). Finally, we want to explore and validate the complex relationship among multiple factors influencing breast cancer complications and breast cancer recurrence. PATIENTS AND METHODS: A cohort study of females with unilateral breast cancer will be conducted in West China Hospital between February 2023 and February 2026. Breast cancer survivors in the age range of 17-55 will be recruited before breast cancer surgery. We will recruit 1557 preoperative patients with a first invasive breast cancer diagnosis. Consenting breast cancer survivors will complete demographic information, clinicopathological factors, surgery information, baseline information, and a baseline depression questionnaire. Data will be collected at four stages: the perioperative stage, chemotherapy therapy stage, radiation therapy stage, and follow-up stage. Data including the incidence and correlation of breast cancer-related lymphedema, breast cancer recurrence, depression, and medical cost will be collected and computed through the four stages above. For every statistical analysis, the participants will be classified into two groups based on whether they develop secondary lymphedema. Incidence rates of breast cancer recurrence and depression will be calculated separately for groups. Multivariate logistic regression will be used to determine whether secondary lymphedema and other parameters can predict breast cancer recurrence. DISCUSSION: Our prospective cohort study will contribute to establishing an early detection program for breast cancer-related lymphedema and recurrence of breast cancer, which are both associated with poor quality of life and reduced life expectancy. Our study can also provide new insights into the physical, economic, treatment-related and mental burdens of breast cancer survivors.


Assuntos
Linfedema Relacionado a Câncer de Mama , Neoplasias da Mama , Linfedema , Feminino , Humanos , Neoplasias da Mama/patologia , Linfedema Relacionado a Câncer de Mama/etiologia , Linfedema Relacionado a Câncer de Mama/complicações , Estudos de Coortes , Qualidade de Vida , Estudos Prospectivos , Recidiva Local de Neoplasia/epidemiologia , Linfedema/epidemiologia , Linfedema/etiologia , Linfedema/diagnóstico
20.
Anal Chem ; 95(6): 3507-3515, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724388

RESUMO

ATP and reactive oxygen species (ROS) are considered significant indicators of cell apoptosis. However, visualizing the interplay between apoptosis-related ATP and ROS is challenging. Herein, we developed a metal-organic framework (MOF)-based nanoprobe for an apoptosis assay using duplex imaging of cellular ATP and ROS. The nanoprobe was fabricated through controlled encapsulation of gold nanorods with a thin zirconium-based MOF layer, followed by modification of the ROS-responsive molecules 2-mercaptohydroquinone and 6-carboxyfluorescein-labeled ATP aptamer. The nanoprobe enables ATP and ROS visualization via fluorescence and surface-enhanced Raman spectroscopy, respectively, avoiding the mutual interference that often occurs in single-mode methods. Moreover, the dual-modal assay effectively showed dynamic imaging of ATP and ROS in cancer cells treated with various drugs, revealing their apoptosis-related pathways and interactions that differ from those under normal conditions. This study provides a method for studying the relationship between energy metabolism and redox homeostasis in cell apoptosis processes.


Assuntos
Apoptose , Ouro , Espécies Reativas de Oxigênio/metabolismo , Ouro/química , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...