Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
RSC Adv ; 14(17): 11908-11913, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623298

RESUMO

Microplastics (MPs) as the formidable pollutants with high toxicity and difficult degradation may threaten the aquaculture industry and human health, making it highly necessary to develop the effective removal methods. In this article, Fe3O4 nanoparticles (NPs) were initially fabricated with mesoporous structure, but showing undesirable adsorption efficiencies for the adsorption of MPs (lower than 70%). Inspired by the reefs-rebuilding corals acting as the sinks for various marine pollutants like plastic, Fe3O4 NPs were coated further with adhesive polymerized dopamine (PDA) yielding Fe3O4@PDA absorbents. Unexpectedly, it was discovered that the corals-mimicking absorbents so formed could allow for the removal of MPs with dramatically enhanced efficiencies up to 98.5%, which is over about 30% higher than those of bare Fe3O4 NPs. Herein, the PDA shells might conduct the increased adhesion to MPs, presumably through the formation of hydrogen bonding, π-π stacking, and hydrophobic interactions. A fast (within 20 min) and stable adsorption of MPs can also be expected, in addition to the PDA-improved environmental storage of Fe3O4 NPs. Subsequently, the Fe3O4@PDA adsorbents were utilized to remove MPs from different water sources with high efficiencies, including pure water, suburban streams, village rivers, lake water, inner-city moats, and aquaculture water. Such a magnet-recyclable adsorbent may provide a new way for rapid, effective, and low-cost removal of MPs pollutants from various water systems.

2.
Analyst ; 149(6): 1784-1790, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38380690

RESUMO

Mesoporous Fe3O4-loaded silver nanocomposites (Fe3O4@Ag) were simply fabricated as bi-functional nanozymes for the catalysis-based detection and removal of Hg2+ ions. It was found that the as-prepared magnetic Fe3O4@Ag could display peroxidase-like catalysis activity that could be rationally enhanced in the presence of Hg2+ ions. To our surprise, the shell of the Ag element may decrease the catalysis of the Fe3O4 to some degree. However, the Ag particles could serve as the probes for specifically recognizing Hg2+ ions and trigger increased catalysis through the formation of Ag-Hg alloys, with a decreased signal background. A high-throughput colorimetric analytical method was thereby developed based on the Fe3O4@Ag catalysis for probing Hg2+ ions in the muscles of fish by using 96-well plates, at linear Hg2+ concentrations ranging from 0.010 to 2.5 mg kg-1. Moreover, the developed colorimetric analytical method was applied to evaluate Hg2+ levels in muscle samples of different kinds of fish. Unexpectedly, an obvious difference of Hg2+ levels in muscles of four kinds of fish was discovered, with the order of snakehead (Ophicephalus argus) > largemouth bass (Micropterus salmoides) > crucian carp (Carassius auratus) > silver carp (Hypophthalmichthys molitrix), where the carnivorous fish showed higher Hg2+ levels than the omnivorous or plant-based ones. Moreover, the as-fabricated Fe3O4@Ag adsorbents with their large specific surface area and high environmental robustness could exhibit efficient Hg2+ adsorption with capacities of up to 397.60 mg g-1. A removal efficiency of 99.40% can also be expected for Hg2+ ions from wastewater, with the magnet-aided recycling of Fe3O4@Ag adsorbents. Such an Fe3O4@Ag-based colorimetric analysis and removal strategy for Hg2+ ions should find wide applications in the fields of aquatic food safety, environmental monitoring, and clinical diagnostics of Hg-poisoning diseases.


Assuntos
Carpas , Mercúrio , Nanocompostos , Animais , Mercúrio/análise , Colorimetria/métodos , Íons
3.
Mol Plant ; 17(3): 423-437, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38273657

RESUMO

Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research. However, genomic studies of these species have lagged. Here we report the chromosome-level reference genome assemblies for N. benthamiana and N. tabacum with an estimated 99.5% and 99.8% completeness, respectively. Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N. tabacum. Comparative analyses revealed evidence for the parental origins and chromosome structural changes, leading to hybrid genome formation of each species. Interestingly, the antiviral silencing genes RDR1, RDR6, DCL2, DCL3, and AGO2 were lost from one or both subgenomes in N. benthamiana, while both homeologs were kept in N. tabacum. Furthermore, the N. benthamiana genome encodes fewer immune receptors and signaling components than that of N. tabacum. These findings uncover possible reasons underlying the hypersusceptible nature of N. benthamiana. We developed the user-friendly Nicomics (http://lifenglab.hzau.edu.cn/Nicomics/) web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.


Assuntos
Cromossomos , Nicotiana , Nicotiana/genética , Genes de Plantas , Genômica , Anotação de Sequência Molecular
4.
Plants (Basel) ; 13(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256773

RESUMO

Potato is an important crop, used not only for food production but also for various industrial applications. With the introduction of the potato as a staple food strategy, the potato industry in China has grown rapidly. However, issues related to bacterial wilt, exacerbated by factors such as seed potato transportation and continuous cropping, have become increasingly severe in the primary potato cultivation regions of China, leading to significant economic losses. The extensive genetic diversity of Ralstonia solanacearum (R. solanacearum), which is the pathogen of bacterial wilt, has led to a lack of highly resistant potato genetic resources. There is a need to identify and cultivate potato varieties with enhanced resistance to reduce the adverse impact of this disease on the industry. We screened 55 accessions of nine different wild potato species against the bacterial wilt pathogen R. solanacearum PO2-1, which was isolated from native potato plants and belongs to phylotype II. Three accessions of two species (ACL24-2, PNT880-3, and PNT204-23) were identified with high resistance phenotypes to the tested strains. We found these accessions also showed high resistance to different phylotype strains. Among them, only PNT880-3 was capable of flowering and possessed viable pollen, and it was diploid. Consistent with the high resistance, decreased growth of R. solanacearum was detected in PNT880-3. All these findings in our study reveal that the wild potato PNT880-3 was a valuable resistance source to bacterial wilt with breeding potential.

5.
Plant J ; 116(5): 1342-1354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614094

RESUMO

Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/genética , Ralstonia solanacearum/fisiologia , Inibidores da Tripsina/metabolismo , Feixe Vascular de Plantas , Plantas , Doenças das Plantas
6.
Hortic Res ; 10(6): uhad087, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37334181

RESUMO

The bacterial pathogen Ralstonia solanacearum (R. solanacearum) delivered type III secretion effectors to inhibit the immune system and cause bacterial wilt on potato. Protein phosphatases are key regulators in plant immunity, which pathogens can manipulate to alter host processes. Here, we show that a type III effector RipAS can reduce the nucleolar accumulation of a type one protein phosphatase (PP1) StTOPP6 to promote bacterial wilt. StTOPP6 was used as bait in the Yeast two-Hybrid (Y2H) assay and acquired an effector RipAS that interacts with it. RipAS was characterized as a virulence effector to contribute to R. solanacearum infection, and stable expression of RipAS in potato impaired plant resistance against R. solanacearum. Overexpression of StTOPP6 showed enhanced disease symptoms when inoculated with wild strain UW551 but not the ripAS deletion mutant, indicating that the expression of StTOPP6 facilitates the virulence of RipAS. RipAS reduced the nucleolar accumulation of StTOPP6, which occurred during R. solanacearum infection. Moreover, the association also widely existed between other PP1s and RipAS. We argue that RipAS is a virulence effector associated with PP1s to promote bacterial wilt.

7.
Mol Plant Pathol ; 24(8): 947-960, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154802

RESUMO

Ralstonia solanacearum is one of the most destructive plant-pathogenic bacteria, infecting more than 200 plant species, including potato (Solanum tuberosum) and many other solanaceous crops. R. solanacearum has numerous pathogenicity factors, and type III effectors secreted through type III secretion system (T3SS) are key factors to counteract host immunity. Here, we show that RipBT is a novel T3SS-secreted effector by using a cyaA reporter system. Transient expression of RipBT in Nicotiania benthamiana induced strong cell death in a plasma membrane-localization dependent manner. Notably, mutation of RipBT in R. solanacearum showed attenuated virulence on potato, while RipBT transgenic potato plants exhibited enhanced susceptibility to R. solanacearum. Interestingly, transcriptomic analyses suggest that RipBT may interfere with plant reactive oxygen species (ROS) metabolism during the R. solanacearum infection of potato roots. In addition, the expression of RipBT remarkably suppressed the flg22-induced pathogen-associated molecular pattern-triggered immunity responses, such as the ROS burst. Taken together, RipBT acts as a T3SS effector, promoting R. solanacearum infection on potato and presumably disturbing ROS homeostasis.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Virulência , Solanum tuberosum/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/metabolismo
8.
J Exp Bot ; 74(14): 4208-4224, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37086267

RESUMO

Potato (Solanum tuberosum) is an important crop globally and is grown across many regions in China, where it ranks fourth in the list of staple foods. However, its production and quality are severely affected by bacterial wilt caused by Ralstonia solanacearum. In this study, we identified StTOPP6, which belongs to the type one protein phosphatase (TOPP) family, and found that transient knock down of StTOPP6 in potato increased resistance against R. solanacearum. RNA-seq analysis showed that knock down of StTOPP6 activated immune responses, and this defense activation partly depended on the mitogen-activated protein kinase (MAPK) signal pathway. StTOPP6 inhibited the expression of StMAPK3, while overexpression of StMAPK3 enhanced resistance to R. solanacearum, supporting the negative role of StTOPP6 in plant immunity. Consistent with the results of knock down of StTOPP6, overexpressing the phosphatase-dead mutation StTOPP6m also attenuated infection and up-regulated MAPK3, showing that StTOPP6 activity is required for disease. Furthermore, we found that StTOPP6 affected the StMAPK3-mediated downstream defense pathway, eventually suppressing the accumulation of reactive oxygen species (ROS). Consistent with these findings, plants with knock down of StTOPP6, overexpression of StTOPP6m, and overexpression of StMAPK3 all displayed ROS accumulation and enhanced resistance to R. solanacearum. Taken together, the findings of our study demonstrate that StTOPP6 negatively regulates resistance to bacterial wilt by affecting the MAPK3-mediated pathway.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ralstonia solanacearum/fisiologia , Transdução de Sinais , Fosfoproteínas Fosfatases/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética
9.
Front Plant Sci ; 14: 1075042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909411

RESUMO

Ralstonia solanacearum is the causal agent of potato bacterial wilt, a major potato bacterial disease. Among the pathogenicity determinants, the Type III Secretion System Effectors (T3Es) play a vital role in the interaction. Investigating the avirulent T3Es recognized by host resistance proteins is an effective method to uncover the resistance mechanism of potato against R. solanacearum. Two closely related R. solanacearum strains HA4-1 and HZAU091 were found to be avirulent and highly virulent to the wild potato Solanum albicans 28-1, respectively. The complete genome of HZAU091 was sequenced in this study. HZAU091 and HA4-1 shared over 99.9% nucleotide identity with each other. Comparing genomics of closely related strains provides deeper insights into the interaction between hosts and pathogens, especially the mechanism of virulence. The comparison of type III effector repertoires between HA4-1 and HZAU091 uncovered seven distinct effectors. Two predicted effectors RipA5 and the novel effector RipBS in HA4-1 could significantly reduce the virulence of HZAU091 when they were transformed into HZAU091. Furthermore, the pathogenicity assays of mutated strains HA4-1 ΔRipS6, HA4-1 ΔRipO1, HA4-1 ΔRipBS, and HA4-1 ΔHyp6 uncovered that the absence of these T3Es enhanced the HA4-1 virulence to wild potato S. albicans 28-1. This result indicated that these T3Es may be recognized by S. albicans 28-1 as avirulence proteins to trigger the resistance. In summary, this study provides a foundation to unravel the R. solanacearum-potato interaction and facilitates the development of resistance potato against bacterial wilt.

10.
Front Microbiol ; 13: 998817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090119

RESUMO

Bacterial wilt caused by Ralstonia solanacearum is a serious soil-borne disease that limits peanut production and quality, but the molecular mechanisms of the peanut response to R. solanacearum remain unclear. In this study, we reported the first work analyzing the transcriptomic changes of the resistant and susceptible peanut leaves infected with R. solanacearum HA4-1 and its type III secretion system mutant strains by the cutting leaf method at different timepoints (0, 24, 36, and 72 h post inoculation). A total of 125,978 differentially expressed genes (DEGs) were identified and subsequently classified into six groups to analyze, including resistance-response genes, susceptibility-response genes, PAMPs induced resistance-response genes, PAMPs induced susceptibility-response genes, T3Es induced resistance-response genes, and T3Es induced susceptibility-response genes. KEGG enrichment analyses of these DEGs showed that plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway were the outstanding pathways. Further analysis revealed that CMLs/CDPKs-WRKY module, MEKK1-MKK2-MPK3 cascade, and auxin signaling played important roles in the peanut response to R. solanacearum. Upon R. solanacearum infection (RSI), three early molecular events were possibly induced in peanuts, including Ca2+ activating CMLs/CDPKs-WRKY module to regulate the expression of resistance/susceptibility-related genes, auxin signaling was induced by AUX/IAA-ARF module to activate auxin-responsive genes that contribute to susceptibility, and MEKK1-MKK2-MPK3-WRKYs was activated by phosphorylation to induce the expression of resistance/susceptibility-related genes. Our research provides new ideas and abundant data resources to elucidate the molecular mechanism of the peanut response to R. solanacearum and to further improve the bacterial wilt resistance of peanuts.

11.
Front Microbiol ; 13: 830900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273586

RESUMO

The bacterial wilt of peanut (Arachis hypogaea L.) caused by Ralstonia solanacearum is a devastating soil-borne disease that seriously restricted the world peanut production. However, the molecular mechanism of R. solanacearum-peanut interaction remains largely unknown. We found that R. solanacearum HA4-1 and PeaFJ1 isolated from peanut plants showed different pathogenicity by inoculating more than 110 cultivated peanuts. Phylogenetic tree analysis demonstrated that HA4-1 and PeaFJ1 both belonged to phylotype I and sequevar 14M, which indicates a high degree of genomic homology between them. Genomic sequencing and comparative genomic analysis of PeaFJ1 revealed 153 strain-specific genes compared with HA4-1. The PeaFJ1 strain-specific genes consisted of diverse virulence-related genes including LysR-type transcriptional regulators, two-component system-related genes, and genes contributing to motility and adhesion. In addition, the repertoire of the type III effectors of PeaFJ1 was bioinformatically compared with that of HA4-1 to find the candidate effectors responsible for their different virulences. There are 79 effectors in the PeaFJ1 genome, only 4 of which are different effectors compared with HA4-1, including RipS4, RipBB, RipBS, and RS_T3E_Hyp6. Based on the virulence profiles of the two strains against peanuts, we speculated that RipS4 and RipBB are candidate virulence effectors in PeaFJ1 while RipBS and RS_T3E_Hyp6 are avirulence effectors in HA4-1. In general, our research greatly reduced the scope of virulence-related genes and made it easier to find out the candidates that caused the difference in pathogenicity between the two strains. These results will help to reveal the molecular mechanism of peanut-R. solanacearum interaction and develop targeted control strategies in the future.

12.
Plant Sci ; 315: 111149, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35067312

RESUMO

Programmed cell death plays a crucial role in plant development and disease defense. Here, we report that the expression of StERF3, a potato EAR motif-containing transcription factor, promotes Phytophthora infestans colonization in Nicotiana benthamiana. Transient overexpression of StERF3 induces cell death in N. benthamiana leaves. The substitution of two key amino acids (14th and 19th) in its ERF domain (the DNA binding domain) dramatically altered its cell death-inducing ability. In addition, StERF3△EAR EAR motif-deletion or StERF3AAA mutation abolished the cell death-inducing ability. StERF3 interacted with the co-repressors Topless-related protein 1 (StTPL1) and Topless-related protein 3 (StTPL3) via the EAR motif. Moreover, cell death induced by StERF3 was facilitated by co-expression with StTPL1 or StTPL3. Virus-induced gene silencing (VIGS) of NbTPL1 and NbTPL3 in N. benthamiana compromised the cell death-inducing ability of StERF3. Furthermore, StERF3-induced cell death accompanied with ROS bursts and the upregulation of the respiratory burst oxidase homolog (Rboh) genes NbRbohA and NbRbohC. In addition, several cell death regulator genes, including NbCRTD, NbNCBP, and NbBCPL, and a hypersensitive cell death marker gene Hin1 were upregulated. StERF3 may positively regulate cell death through its EAR motif-mediated transcriptional repressor activity by inhibiting the expression of genes potentially coding the repressor of cell death (CD).


Assuntos
Morte Celular/genética , Resistência à Doença/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/fisiologia , Phytophthora infestans/patogenicidade , Fatores de Transcrição , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Interações Hospedeiro-Parasita
13.
Diabetes Metab Syndr Obes ; 14: 4371-4380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737593

RESUMO

Obesity-related glomerulopathy (ORG) is a secondary glomerular disease caused by obesity, with clinical manifestations such as proteinuria and glomerulomegaly. Currently, the high incidence of obesity brings a change in the spectrum of kidney diseases across the globe, including China. ORG has become another important secondary nephropathy leading to end-stage renal disease (ESRD), and its incidence has increased significantly. This trend is bound to bring about a serious socioeconomic burden. Therefore, it is urgent to study its pathogenesis and intervention measures. Currently, the occurrence and development mechanisms in ORG are complicated by many factors, which are still unclear. In the past 20 years, with the continuous intensive research on mechanisms such as hypoxia in the metabolic process, immune inflammation, and pyroptosis, there have been new advances in the mechanism of ORG, especially the important role of inflammation in podocyte injury and its impact on the progress of ORG. Here, we briefly review the possible pathogenic role of the inflammasome in the podocyte damage in ORG and summarize the possible therapeutical strategies targeting inflammasome.

14.
Biochem Biophys Res Commun ; 550: 120-126, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33691198

RESUMO

Ralstonia solanacearum causes bacterial wilt disease in a broad range of plants, primarily through type Ⅲ secreted effectors. However, the R. solanacearum effectors promoting susceptibility in host plants remain limited. In this study, we determined that the R. solanacearum effector RipV2 functions as a novel E3 ubiquitin ligase (NEL). RipV2 was observed to be locali in the plasma membrane after translocatio into plant cells. Transient expression of RipV2 in Nicotiana benthamiana could induce cell death and suppress the flg22-induced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, mediating such effects as attenuation of the expression of several PTI-related genes and ROS bursts. Furthermore, we demonstrated that the conserved catalytic residue is highly important for RipV2. Transient expression of the E3 ubiquitin ligase catalytic mutant RipV2 C403A alleviated the PTI suppression ability and cell death induction, indicating that RipV2 requires its E3 ubiquitin ligase activity for its role in plant-microbe interactions. More importantly, mutation of RipV2 in R. solanacearum reduces the virulence of R. solanacearum on potato. In conclusion, we identified a NEL effector that is required for full virulence of R. solanacearum by suppressing plant PTI.


Assuntos
Moléculas com Motivos Associados a Patógenos/antagonistas & inibidores , Imunidade Vegetal , Ralstonia solanacearum/enzimologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Virulência , Motivos de Aminoácidos , Biocatálise , Morte Celular , Membrana Celular/enzimologia , Cisteína/metabolismo , Flagelina/química , Flagelina/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Ralstonia solanacearum/genética , Ubiquitina-Proteína Ligases/química , Virulência/genética
15.
Mol Plant Microbe Interact ; 34(4): 337-350, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33332146

RESUMO

The infection of potato with Ralstonia solanacearum UW551 gives rise to bacterial wilt disease via colonization of roots. The type III secretion system (T3SS) is a determinant factor for the pathogenicity of R. solanacearum. To fully understand perturbations in potato by R. solanacearum type III effectors(T3Es), we used proteomics to measure differences in potato root protein abundance after inoculation with R. solanacearum UW551 and the T3SS mutant (UW551△HrcV). We identified 21 differentially accumulated proteins. Compared with inoculation with UW551△HrcV, 10 proteins showed significantly lower abundance in potato roots after inoculation with UW551, indicating that those proteins were significantly downregulated by T3Es during the invasion. To identify their functions in immunity, we silenced those genes in Nicotiana benthamiana and tested the resistance of the silenced plants to the pathogen. Results showed that miraculin, HBP2, and TOM20 contribute to immunity to R. solanacearum. In contrast, PP1 contributes to susceptibility. Notably, none of four downregulated proteins (HBP2, PP1, HSP22, and TOM20) were downregulated at the transcriptional level, suggesting that they were significantly downregulated at the posttranscriptional level. We further coexpressed those four proteins with 33 core T3Es. To our surprise, multiple effectors were able to significantly decrease the studied protein abundances. In conclusion, our data showed that T3Es of R. solanacearum could subvert potato root immune-related proteins in a redundant manner.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Proteínas de Bactérias/genética , Doenças das Plantas , Proteômica , Sistemas de Secreção Tipo III/genética
16.
Mikrochim Acta ; 187(4): 224, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170431

RESUMO

An enzyme-free, metal-free, and preconcentration-free electrochemical sensor for pentachlorophenol assay has been fabricated. The interface of the sensor is based on a hollow zeolitic imidazolate framework-derived mesoporous carbon material (denoted as HZC/SPCE). The sensor exhibits linear amperometric response upon pentachlorophenol at 0.82 V (vs. Ag/AgCl) in the concentration range 0.001 to 26.8 mg L-1 (3.75 × 10-8~1.006 × 10-4 M) (R2 = 0.997). The sensitivity of HZC/SPCE is 3.53 × 102 µA mM-1 cm-2 with a detection limit of 2.05 × 10-9 M (S/N = 3) for pentachlorophenol. The method has been applied to the determination of pentachlorophenol in spiked food packaging samples with recoveries in the range 92.0 to 107.0%. Graphical abstract Schematic representation of the synthesis of hollow ZIFs-derived hollow carbon material. Free protons derived from tannic acid penetrated into ZIF-8 to destroy its solid framework and the outer parts covered by tannic acid were protected from further etching. After pyrolysis, the morphology of HZC remained similar to that of HZIF-8. Abbreviation: CTAB: hexadecyl trimethyl ammonium bromide; Melm: 2-methylimidazole; ZIF-8: zeolitic imidazolate framework-8; TA: tannic acid; HZIF-8: hollow zeolitic imidazolate framework-8; HZC: hollow zeolitic imidazolate frameworks (ZIFs)-derived mesoporous carbon material.


Assuntos
Técnicas Biossensoriais , Carbono/química , Técnicas Eletroquímicas , Contaminação de Alimentos/análise , Pentaclorofenol/análise , Zeolitas/química , Eletrodos , Embalagem de Alimentos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
J Chin Med Assoc ; 83(1): 5-7, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31569091

RESUMO

Measles is a highly infectious viral illness and is one of the world's most contagious diseases that can affect all people if they have not been vaccinated or have not had it before. Before measles vaccine became available in 1963, major epidemic occurred approximately every 2 to 3 years and thus 99% of the people were thought to have been infected naturally with measles virus and got immune for life. In 2000, measles was declared eliminated from the United States, and yet 1215 cases have been reported from 30 states as of August 22, 2019. Currently, there are several large measles outbreaks universally, and some people who were not immune and they need to get their measles, mumps, rubella (MMR) vaccine to prevent measles outbreaks. As vaccination coverage increases, the average age of measles infection can change to adolescents and young adults. In addition, the protective antibodies derived from vaccination might decrease gradually, and the risk of measles infection in young adults is increasing regardless of international travelling.


Assuntos
Vacina contra Sarampo/imunologia , Sarampo/epidemiologia , Vacinação , Surtos de Doenças , Humanos , Sarampo/diagnóstico , Sarampo/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola/efeitos adversos
18.
Front Microbiol ; 10: 1893, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474968

RESUMO

Ralstonia solanacearum, which causes bacterial wilt in a broad range of plants, is considered a "species complex" due to its significant genetic diversity. Recently, we have isolated a new R. solanacearum strain HA4-1 from Hong'an county in Hubei province of China and identified it being phylotype I, sequevar 14M (phylotype I-14M). Interestingly, we found that it can cause various disease symptoms among different potato genotypes and display different pathogenic behavior compared to a phylogenetically related strain, GMI1000. To dissect the pathogenic mechanisms of HA4-1, we sequenced its whole genome by combined sequencing technologies including Illumina HiSeq2000, PacBio RS II, and BAC-end sequencing. Genome assembly results revealed the presence of a conventional chromosome, a megaplasmid as well as a 143 kb plasmid in HA4-1. Comparative genome analysis between HA4-1 and GMI1000 shows high conservation of the general virulence factors such as secretion systems, motility, exopolysaccharides (EPS), and key regulatory factors, but significant variation in the repertoire and structure of type III effectors, which could be the determinants of their differential pathogenesis in certain potato species or genotypes. We have identified two novel type III effectors that were probably acquired through horizontal gene transfer (HGT). These novel R. solanacearum effectors display homology to several YopJ and XopAC family members. We named them as RipBR and RipBS. Notably, the copy of RipBR on the plasmid is a pseudogene, while the other on the megaplasmid is normal. For RipBS, there are three copies located in the megaplasmid and plasmid, respectively. Our results have not only enriched the genome information on R. solanacearum species complex by sequencing the first sequevar 14M strain and the largest plasmid reported in R. solanacearum to date but also revealed the variation in the repertoire of type III effectors. This will greatly contribute to the future studies on the pathogenic evolution, host adaptation, and interaction between R. solanacearum and potato.

19.
Se Pu ; 37(1): 8-14, 2019 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-30693703

RESUMO

A method is proposed for the simultaneous determination of nine benzimidazole and neonicotinoid pesticides present in honey by employing automatic solid-phase extraction with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). A honey sample was dissolved in a phosphate buffer (pH=7.8) followed by ultrasonic extraction. The extracts were then purified through solid-phase extraction (SPE) with hydrophilic-lipophilic balance (HLB) cartridges. Finally, nitrogen was blown on the obtained mixture, and the mixture was subsequently filtered for conducting HPLC-MS/MS analysis. Nine compounds were detected under the multiple reaction monitoring (MRM) mode, and the corresponding quantification was performed by employing the method of internal standards. The nine detected pesticides demonstrated good linearity in the range of 0.002-0.05 mg/L, with the correlation coefficient values (r2) being higher than 0.99. The limits of detection (LODs) (S/N=3) and limits of quantification (LOQs) (S/N=10) were found to be in the ranges of 0.1-1.0 µg/kg and 0.3-2.0 µg/kg, respectively. Furthermore, the results indicated that the recoveries of the nine detected pesticides range from 78.2%-101.2% at three spiked levels of 5.0, 10.0, and 20.0 µg/kg with a relative standard deviation (RSD) range of 1.3%-14.3% (n=6). Hence, the proposed method is rapid and can be employed for accurate determination of pesticide residues in large quantities of honey samples.


Assuntos
Contaminação de Alimentos/análise , Mel/análise , Resíduos de Praguicidas/análise , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida , Espectrometria de Massas em Tandem
20.
Biosens Bioelectron ; 123: 101-107, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29980342

RESUMO

Here we present a new method to fabricate enzyme-mimic metal-free catalysts for electrochemical detection of superoxide anion (O2•-) by introducing phosphate groups into graphene-based foam. Through a template-free hydrothermal process, graphene oxide (GO) was treated with different amount of phytic acid (PA) to obtain 3D porous graphene-based foam (PAGF). Characterizations demonstrate that phosphate groups were successfully modified on the surface and inter layer structure of PAGF materials and the defects and disorder degree of PAGF could be controlled by adjusting the addition of PA precursors. Meanwhile, the synthesized PAGF was successfully immobilized on screen printed carbon electrodes (SPCEs) and employed in O2•- detection. With PA treated on graphene structure, the resulted PAGF/SPCEs exhibit distinct characteristic redox peaks, showing enzyme-mimic catalytic activity toward O2•- dismutation. Also, the amount of modified phosphate groups has caused a considerable variety on the performance of PAGF-based electrodes. Apart from high sensitivity, wide liner range, low detection limit, good selectivity and long-term stability, our sensors also present satisfying performance in the real-time monitoring of drug-induced O2•- released from Hela cells. The reliability of the biological measurement was further demonstrated via electron paramagnetic resonance (EPR) to characterize the released O2•- from stimulated cells by using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) to trap the transient O2•-. The above results indicate that our established sensors hold potential application in the real-time detection of O2•- in biological samples.


Assuntos
Técnicas Biossensoriais , Grafite/química , Ácido Fítico/química , Superóxidos/isolamento & purificação , Carbono/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Limite de Detecção , Óxidos/química , Superóxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...