Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Plant Dis ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769291

RESUMO

Lithocarpus polystachyus (Wall. ex A. DC.), an economically valuable plant species belonging to the Fagaceae family, has been used as herbal tea to prevent diabetes because of the high content of flavonoids and dihydrochalcones in the leaves (Shang et al. 2022). In July 2022, the severe leaf lesion on L. polystachyus was first observed in Yongshun County, Xiangxi autonomous prefecture (28°45'34''N, 109°40'11''E), Hunan province, China. Yongshun County is characterized by hills and mountains, situated in a subtropical region with a mild and humid climate. A second outbreak in July 2023 was observed in the same area. The observed incident rates in the past two years were 87.3% and 90.6%, respectively. Once infected, almost all plant leaves will be infected, leading to a substantial reduction in the yield of L. polystachyus. The disease presented symptoms characterized by round or irregularly shaped lesions that initially manifested as brown spots. These lesions frequently merged into larger, dark-brown areas along the leaf margins before eventually wilting. To ascertain the pathogenic species responsible for this disease, fungal isolation was conducted using a tissue separation method (Xu et al. 2023). The infected leaf tissues were surface-disinfected with 75% ethanol and 0.1% HgCl then small pieces (1×1 cm), were placed onto potato dextrose agar (PDA) medium (Sigma-Aldrich, 70139) and incubated at 28°C for 6-9 days. Colonies were villiform and initially white, becoming gray after 6 days. Sterilized dissecting needles were used to pick single hyphal tips from the edge of the colonies and placed onto PDA for strain purification. After 15 days, the purified colonies grew fluffy white hyphae with abundant conidia. The conidia were cylindrical, had round ends, and ranged from 5.75 to 14.83 µm long and 1.75 to 2.38 µm wide (n=50). According to morphological and cultural characteristics, these isolates were preliminarily identified as Colletotrichum fructicola Prihast., L. Cai & K.D. Hyde (Damm et al. 2012). To further affirm the identity of the pathogen, DNA was extracted from mycelia using a DNA extraction kit (Sigma-Aldrich, G2N70). The internal transcribed spacer (ITS) region, the transcription elongation factor (TEF), and the actin (ACT) gene were then amplified from genomic DNA extracted from three isolates (Cof1, Cof2, and Cof3) using specific primers. The primers utilized were ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R and ACT-512F/ACT-783R (Carbone and Kohn 1999) for ITS region, transcription elongation factor gene and actin gene amplification, respectively. Sequence identity indicated that these isolates were highly homologous to C. fructicola. The ITS (Genbank No. PP002156, OR880553 and OR880554), TEF (No. PP061421, PP061422 and PP061423), and ACT (No. PP061418, PP061419 and PP061420) sequences of the isolates Cof1, Cof2, and Cof3 shared 99 to 100% identity with their counterparts (No. OR083309, MF627961, and OQ427895) in C. fructicola, respectively. A neighbor-joining phylogenetic tree constructed using MEGA11 (Tamura et al. 2021) also indicated that these isolates were C. fructicola. Both morphological and molecular characteristics confirmed the identification of this pathogen as C. fructicola. Colletotrichum species are known to cause anthracnose disease in a variety of economically important crops (Sharma and Kulshrestha 2015). To further validate the ability of the isolated C. fructicola to induce the same symptoms as observed in the field, the pathogenicity assay was assessed following Koch's postulates (Gradmann, 2014). Conidial suspensions (1×105 conidia per mL) from three isolates were individually inoculated onto artificially wounded leaves of 3-year-old L. polystachyus. Negative controls were established by inoculating leaf wounds with sterile distilled water. The plants were incubated in a greenhouse at 28°C and 90% humidity with a 12-h photoperiod. The experiment was replicated three times. Necrotic lesions were observed on all pathogen-inoculated wounds within 6 days after inoculation, whereas controls showed no observable symptoms. Morphological and molecular characterization of re-isolated pathogens from infected leaves indicated that the pathogens were identical. To our knowledge, this is the first report of anthracnose of L. polystachyus caused by C. fructicola in China. Farmers in the local mountainous areas are economically reliant on L. polystachyus production, while anthracnose has caused over half of the trees to lose their commercial value, resulting in significant economic losses. Our findings hold great promise for advancing strategies in the prevention and treatment of anthracnose in L. polystachyus.

2.
J Clin Invest ; 134(10)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625739

RESUMO

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-ß1-induced fibrotic responses in renal fibroblasts and epithelial cells independently of Smad3 phosphorylation. Cellular uptake of Cf48 and its profibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3'UTR of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis that operates as an RNA-binding peptide to promote the production of extracellular matrix.


Assuntos
Nefropatias Diabéticas , Fibrose , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Masculino , Rim/metabolismo , Rim/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas
3.
J Inorg Biochem ; 255: 112522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522215

RESUMO

With the abuse of antibiotics and azoles, drug-resistant Candida albicans infections have increased sharply and are spreading rapidly, thereby significantly reducing the antifungal efficacy of existing therapeutics. Several patients die of fungal infections every year. Therefore, there is an urgent requirement to develop new drugs. Accordingly, we synthesized a series of polypyridyl ruthenium (II) complexes having the formula [Ru (NN)2 (bpm)] (PF6)2 (N-N = 2,2'-bipyridine) (bpy, in Ru1), 1,10-phenanthroline (phen, in Ru2), 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru3) (bpm = 2,2'-bipyrimidine) and studied their antifungal activities. Ru3 alone had no effect on the drug-resistant strains, but Ru3 combined with fluconazole (FLC) exhibited significant antifungal activity on drug-resistant strains. A high-dose combination of Ru3 and FLC exhibited direct fungicidal activity by promoting the accumulation of reactive oxygen species and damaging the cellular structure of C. albicans. Additionally, the combination of Ru3 and FLC demonstrated potent antifungal efficacy in vivo in a mouse model of invasive candidiasis. Moreover, the combination significantly improved the survival state of mice, restored their immune systems, and reduced renal injury. These findings could provide ideas for the development of ruthenium (II) complexes as novel antifungal agents for drug-resistant microbial stains.


Assuntos
Candidíase , Rutênio , Humanos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida albicans , Rutênio/farmacologia , Candidíase/tratamento farmacológico , Testes de Sensibilidade Microbiana
4.
Anal Chem ; 96(6): 2534-2542, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38302490

RESUMO

Cerebrospinal fluid (CSF) biomarkers are more sensitive than the Movement Disorder Society (MDS) criteria for detecting prodromal Parkinson's disease (PD). Early detection of PD provides the best chance for successful implementation of disease-modifying treatments, making it crucial to effectively identify CSF extracted from PD patients or normal individuals. In this study, an intelligent sensor array was built by using three metal-organic frameworks (MOFs) that exhibited varying catalytic kinetics after reacting with potential protein markers. Machine learning algorithms were used to process fingerprint response patterns, allowing for qualitative and quantitative assessment of the proteins. The results were robust and capable of discriminating between PD and non-PD patients via CSF detection. The k-nearest neighbor regression algorithm was used to predict MDS scores with a minimum mean square error of 38.88. The intelligent MOF sensor array is expected to promote the detection of CSF biomarkers due to its ability to identify multiple targets and could be used in conjunction with MDS criteria and other techniques to diagnose PD more sensitively and selectively.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Diagnóstico Precoce , Algoritmos , Aprendizado de Máquina
5.
BMC Nephrol ; 25(1): 58, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368317

RESUMO

Recent studies have suggested that ferroptosis participates in various renal diseases. However, its effect on focal segmental glomerulosclerosis remains unclear. This study analyzed the GSE125779 and GSE121211 datasets to identify the differentially expressed genes (DEGs) in renal tubular samples with and without FSGS. The Cytoscape was used to construct the protein-protein interaction network. Moreover, the ferroptosis-related genes (FRGs) were obtained from the ferroptosis database, while ferroptosis-related DEGs were obtained by intersection with DEGs. The target genes were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The GSE108112 dataset was used to verify the expression of target FRGs. Besides, we built the mRNA-miRNA network regarding FRGs using the NetworkAnalyst database, and circRNAs corresponding to key miRNAs were predicted in the ENCORI database. In this study, 16 ferroptosis-related DEGs were identified between FSGS and healthy subjects, while five co-expressed genes were obtained by three topological algorithms in Cytoscape. These included the most concerned Hub genes JUN, HIF1A, ALB, DUSP1 and ATF3. The KEGG enrichment analysis indicated that FRGs were associated with mitophagy, renal cell carcinoma, and metabolic pathways. Simultaneously, the co-expressed hub genes were analyzed to construct the mRNA-miRNA interaction network and important miRNAs such as hsa-mir-155-5p, hsa-mir-1-3p, and hsa-mir-124-3p were obtained. Finally, 75 drugs targeting 54 important circRNAs and FRGs were predicted. This study identified the Hub FRGs and transcriptomic molecules from FSGS in renal tubules, thus providing novel diagnostic and therapeutic targets for FSGS.


Assuntos
Ferroptose , Glomerulosclerose Segmentar e Focal , Túbulos Renais , MicroRNAs , Humanos , Ferroptose/genética , Genes vif , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/terapia , MicroRNAs/genética , RNA Circular , RNA Mensageiro
6.
ACS Sens ; 8(12): 4587-4596, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38038440

RESUMO

Ascorbic acid (AA) is significant in protecting the brain from further damage and maintaining brain homeostasis after ischemia stroke (IS); however, the dynamic change of cerebral AA content after different degrees of ischemic stroke is still unclear. Herein, carboxylated single-walled carbon nanotube (CNT-COOH)- and polyethylenedioxythiophene (PEDOT)-modified carbon fiber microelectrodes (CFEs) were proposed to detect in situ cerebral AA with sensitivity, selectivity, and stability. Under differential pulse voltammetry scanning, the CFE/CNT-COOH/PEDOT gave a ratiometric, electrochemically responsive signal. The internal standard peak at -310 mV was from the reversible peak of O2 reduction and the deprotonation and protonation of quinone groups, while AA was oxidized at -70 mV. In vivo experimental results indicated that the cerebral AA level gradually increased with the ischemic time increasing in different middle cerebral artery occlusion (MCAO) model mice. This work implies that the increasing cerebral AA level may be highly related to the glutamate excitotoxicity and ROS-led cell apoptosis and paves a new way for further understanding the release and metabolic mechanisms of AA during ischemia reperfusion and IS.


Assuntos
Ácido Ascórbico , Encéfalo , Ratos , Camundongos , Animais , Ácido Ascórbico/química , Ratos Sprague-Dawley , Encéfalo/metabolismo , Reperfusão , Isquemia/metabolismo
7.
ACS Omega ; 8(44): 41855-41864, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970022

RESUMO

A one-step method for synthesizing 3-(Fmoc-amino acid)-3,4-diaminobenzoic acids was used to prepare preloaded diaminobenzoate resin. The coupling of free diaminobenzoic acid and Fmoc-amino acids gave pure products in 40-94% yield without any purification step in addition to precipitation except for histidine. For the proline residue, crude products were collected and used for solid-phase peptide synthesis to give a moderate yield of a pentapeptide. In addition, this method was used to prepare unusual amino acid derivatives, namely, (2-naphthyl) alanine and 6-aminohexanoic acid derivatives, in 50 and 65% yield, respectively.

8.
J Gastroenterol Hepatol ; 38(12): 2215-2227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839851

RESUMO

BACKGROUND AND AIMS: Mitochondrial dysfunction plays a crucial role in the progression of non-alcoholic steatohepatitis (NASH). Mitochondrial division inhibitor 1 (Mdivi1) is a potential inhibitor of dynamin-related protein (Drp1) and mitochondrial fission. However, the therapeutic effect of Mdivi1 against NASH and its underlying molecular mechanisms remain unclear. METHODS: In this study, we established mouse models of NASH by inducing high-fat/high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diets and treated the animals with 5 mg/kg/day Mdivi1 or placebo. RESULTS: Treatment with Mdivi1 significantly alleviated diet-induced fatty liver phenotypes, including increased liver weight/body weight ratio, insulin resistance, hepatic lipid accumulation, steatohepatitis, and liver injury. Furthermore, Mdivi1 treatment suppressed HFHC or MCD diet-induced changes in the expression of genes related to lipid metabolism and inflammatory cytokines. Additionally, Mdivi1 reduced macrophage infiltration in the injured liver and promoted polarization of macrophages towards the M1 phenotype. At the molecular level, Mdivi1 attenuated mitochondrial fission by reducing Drp1 activation and expression, thereby decreasing mitochondrial reactive oxygen species accumulation and mitochondrial DNA damage. Moreover, Mdivi1-treated mice exhibited elevated levels of phosphorylated-c-Jun N-terminal kinase (p-JNK), mitochondrial fission factor (MFF), cleaved caspase 3 protein, and TUNEL-positive cell expression in the liver, suggesting that Mdivi1 might ameliorate mitochondrial dysfunction and reduce hepatocyte apoptosis by inhibiting the JNK/MFF pathway. CONCLUSION: Collectively, Mdivi1 protected against diet-induced NASH by restoring mitochondrial homeostasis and function, potentially through its inhibitory effect on the JNK/MFF pathway. Consequently, further investigation of Mdivi1 as a promising drug for NASH treatment is warranted.


Assuntos
Doenças Mitocondriais , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Citocinas/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Colina/metabolismo , Dinaminas , Doenças Mitocondriais/metabolismo , Camundongos Endogâmicos C57BL , Metionina , Modelos Animais de Doenças
9.
J Gastroenterol Hepatol ; 38(12): 2195-2205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787118

RESUMO

BACKGROUND AND AIMS: Fecal microbiota transplantation (FMT) can improve the symptoms of nonalcoholic fatty liver disease (NAFLD) by restoring the gut microbiota. This study was aimed to evaluate the therapeutic effects of single-donor (SD) or multi-donor (MD) FMT in a mouse model of hepatic steatosis and explore the underlying mechanisms. METHODS: Fecal samples were collected from NAFLD patients and healthy controls with similar baseline characteristics, with gut microbiota analyzed. Mice were fed either a normal-chow diet (NCD) or a high-fat diet (HFD) for 3 weeks and then administered fecal microbiota collected from healthy SDs or MDs for 12 weeks. RESULTS: Fecal samples from NAFLD patients showed significantly lower microbial diversity than those from healthy controls. MD-FMT reduced liver fat accumulation and body weight and significantly improved serum and liver biochemical indices in HFD-fed mice. Compared to untreated HFD-fed mice, MD-FMT significantly decreased the relative expression of IL-1ß, IL-6, TNF-α, IFN-γ, and IL-1ß mRNAs in the liver. The relative protein level of intestinal barrier components, including claudin-1, occludin, and E-cadherin, as well as serum lipopolysaccharide (LPS) level in mice, were found to be improved following MD-FMT intervention. Furthermore, FMT reversed HFD-induced gut dysbiosis and increased the abundance of beneficial bacteria such as Blautia and Akkermansia. CONCLUSION: NAFLD patients and healthy controls showed distinct gut microbiota. Likewise, HFD altered gut microbiota in mice compared to NCD-fed controls. MD-FMT restored gut dysbiosis in HFD-fed mice and attenuated liver steatosis, and should be considered as an effective treatment option for NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Doenças não Transmissíveis , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transplante de Microbiota Fecal , Disbiose , Camundongos Endogâmicos C57BL , Fígado/metabolismo
10.
Nano Lett ; 23(18): 8628-8636, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37694968

RESUMO

Magnetic resonance imaging (MRI) is an important tool in the diagnosis of many cancers. However, clinical gadolinium (Gd)-based MRI contrast agents have limitations, such as large doses and potential side effects. To address these issues, we developed a hydrogen-bonded organic framework-based MRI contrast agent (PFC-73-Mn). Due to the hydrogen-bonded interaction of water molecules and the restricted rotation of manganese ions, PFC-73-Mn exhibits high longitudinal relaxation r1 (5.03 mM-1 s-1) under a 3.0 T clinical MRI scanner. A smaller intravenous dose (8 µmol of Mn/kg) of PFC-73-Mn can provide strong contrast and accurate diagnosis in multiple kinds of cancers, including breast tumor and ultrasmall orthotopic glioma. PFC-73-Mn represents a prospective new approach in tumor imaging, especially in early-stage cancer.


Assuntos
Glioma , Manganês , Humanos , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos
11.
Lupus ; 32(12): 1369-1380, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37769649

RESUMO

Immune dysregulation is not only a pathogenic mechanism in systemic lupus erythematosus (SLE) but also a potential cause of the link between SLE and cancer. The current understanding of SLE monocyte-associated biomarkers is limited, and the precise mechanism behind the link between SLE and cancer is uncertain. By using WGCNA and immune infiltration to analyze the GSE72326 dataset, we determined the most pertinent modules for monocytes and discovered eight candidate hub genes from them. The limma software was used to find genes that were differently expressed in SLE. The genes that overlapped between the two were chosen using a Venn diagram as the essential genes related to monocytes in SLE, and the essential genes were verified by several datasets. Correlation analysis and GSEA analysis were used to examine the probable immunological pathways connected to key genes. We examined the expression of hub genes in cancer and their interaction with monocytes using the GEPIA and TIMER databases to understand the significance of essential genes in tumorigenesis. In addition, we performed transcription factor identification. We discovered three biomarkers (IFI30, BLVRA, and RIN2) that are mostly involved in interferon-related signaling pathways and are associated with monocyte-mediated immune responses in SLE. The three important genes are also strongly expressed in a number of malignancies and have a relationship with monocytes. As a result, IFI30, BLVRA, and RIN2 may act as SLE-associated biomarkers of monocytes and as a bridge between SLE and tumors. We proposed that interferon-related signaling pathways might function as possible mediators of cancer risk in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Neoplasias , Humanos , Monócitos , Lúpus Eritematoso Sistêmico/complicações , Biomarcadores/metabolismo , Neoplasias/genética , Neoplasias/complicações , Interferons , Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo
12.
J Ovarian Res ; 16(1): 161, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37563629

RESUMO

Although n-hexane can induce ovarian damage by inducing ovarian granulosa cell (GC) apoptosis, the mechanism underlying this induction of apoptosis has not been fully elucidated. In this study, rat ovarian GCs were exposed to different concentrations of 2,5-hexanedione (2,5-HD) (the main metabolite of n-hexane) in vitro to observe apoptosis, and the mechanism was further explored via mRNA microarray analysis. Hoechst 33258 staining and flow cytometry suggested that the apoptosis rate of ovarian GC apoptosis was significantly increased in the 2,5-HD-treated group. Subsequently, microarray analysis revealed that a total of 5677 mRNAs were differentially expressed, and further GO and KEGG analyses revealed that the differentially expressed genes were significantly enriched in many signaling pathways, including the Hippo pathway. A total of 7 differentially expressed genes that function upstream of the Hippo signaling pathway (Nf2, Wwc1, Ajuba, Llgl1, Dlg3, Rassf6 and Rassf1) were selected to confirm the microarray results by qRT-PCR, and the expression of these genes did change. Subsequently, the expression of key effector genes (Yap1, Mst1 and Lats1) and target genes (Ctgf and Puma) of the Hippo signaling was measured, and the results suggested that the mRNA and protein levels of Yap1, Mst1, Lats1, and Ctgf were significantly decreased while those of Puma were significantly increased after 2,5-HD treatment. Further CO-IP analysis suggested that the interaction between YAP1 and TEAD was significantly reduced after 2,5-HD treatment, while the interaction between YAP1 and P73 was not affected. In summary, during the 2,5-HD-induced apoptosis of ovarian GCs, the Hippo signaling pathway is inhibited, and downregulation of the pro-proliferation gene Ctgf and upregulated of the pro-apoptosis gene Puma are important. Decreased Ctgf expression was associated with decreased binding of YAP1 to TEAD. However, increased PUMA expression was not associated with YAP1 binding to P73.


Assuntos
Proteínas Reguladoras de Apoptose , Via de Sinalização Hippo , Ratos , Animais , Feminino , Proteínas Reguladoras de Apoptose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Células da Granulosa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo
13.
J Gastroenterol Hepatol ; 38(11): 2006-2017, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608570

RESUMO

BACKGROUND AND AIM: Mucosal healing has emerged as a desirable treatment goal for patients with ulcerative colitis (UC). Healing of mucosal wounds involves epithelial cell proliferation and differentiation, and Y-box transcription factor ZONAB has recently been identified as the key modulator of intestinal epithelial restitution. METHODS: We studied the characteristics of UXT-V1 expression in UC patients using immunohistochemistry and qPCR. The functional role of UXT-V1 in the colonic epithelium was investigated using lentivirus-mediated shRNA in vitro and ex vivo. Through endogenous Co-immunoprecipitation and LC-MS/MS, we identified ZONAB as a UXT-V1-interactive protein. RESULTS: Herein, we report that UXT-V1 promotes differentiation of intestinal epithelial cells by regulating the nuclear translocation of ZONAB. UXT-V1 was upregulated in the intestinal epithelia of UC patients compared with that of healthy controls. Knocking down UXT-V1 in NCM-460 cells led to the enrichment of pathways associated with proliferation and differentiation. Furthermore, the absence of UXT-V1 in cultured intestinal epithelial cells and colonic organoids inhibited differentiation to the goblet cell phenotype. Mechanistically, the loss of UXT-V1 in the intestinal epithelial cells allowed nuclear translocation of ZONAB, wherein it regulated the transcription of differentiation-related genes, including AML1 and KLF4. CONCLUSION: Taken together, our study reveals a potential role of UXT-V1 in regulating epithelial cell differentiation, proving a molecular basis for mucosal healing in UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Mucosa Intestinal/metabolismo , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Chaperonas Moleculares/metabolismo
14.
ACS Appl Mater Interfaces ; 15(28): 33239-33249, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399544

RESUMO

Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease that is so far incurable with long-term health risks. The high doses and frequent administration for the available RA drug always lead to adverse side effects. Aiming at the obstacles to achieving effective RA treatment, we prepared macrophage cell membrane-camouflaged nanoparticles (M-EC), which were assembled from epigallocatechin gallate (EGCG) and cerium(IV) ions. Due to its geometrical similarity to the active metal sites of a natural antioxidant enzyme, the EC possessed a high scavenge efficiency to various types of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The macrophage cell membrane assisted M-EC in escaping from the immune system, being uptaken by inflammatory cells, and specifically binding IL-1ß. After tail vein injection to the collagen-induced arthritis (CIA) mouse model, the M-EC accumulated at inflamed joints and effectively repaired the bone erosion and cartilage damage of rheumatoid arthritis by relieving synovial inflammation and cartilage erosion. It is expected that the M-EC can not only pave a new way for designing metal-phenolic networks with better biological activity but also provide a more biocompatible therapeutic strategy for effective treatment of RA.


Assuntos
Artrite Reumatoide , Cério , Camundongos , Animais , Cério/farmacologia , Cério/uso terapêutico , Biomimética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Inflamação/tratamento farmacológico
15.
Discov Nano ; 18(1): 94, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477789

RESUMO

Effective and safe delivery of small interfering RNA (siRNA) by nanomaterials to cancer cells is one of the main challenges in cancer treatment. In this study, we constructed the selenium nanoparticles conjugated with RGDfC (one tumor-targeted polypeptide) to prepare a biocompatible gene vector (RGDfC-SeNPs) and then loaded with siDCBLD2 to synthesize the RGDfC-Se@siDCBLD2 for colorectal cancer (CRC) therapy. As expected, RGDfC-SeNPs could enhance the cellular uptake of siDCBLD2 in human HCT-116 colon cancer cells by targeting polypeptide RGDfC on the surface of colon cancer cells. RGDfC-Se@siDCBLD2 could be effectively internalized by HCT-116 cells mainly through a clathrin-related endocytosis pathway. In addition, RGDfC-Se@siDCBLD2 exhibited high siRNA release efficiency in an acidic tumor environment. Moreover, RGDfC-Se@siDCBLD2 could inhibit the proliferation and induce apoptosis in HCT-116 cells by special silencing gene DCBLD2 expression. RGDfC-Se@siDCBLD2 could be specifically accumulated to the tumor sites and exhibited significantly anti-CRC efficacy on HCT-116 tumor-bearing mice without obvious side effects. Taken together, these results suggest that selenium nanoparticles can be used as an effective gene vector with good biocompatibility, and RGDfC-Se@siDCBLD2 provides a promising strategy for combining tumor-target and siRNA delivery in treating CRC.

16.
Cell Rep ; 42(7): 112801, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463107

RESUMO

How neuronal signaling affects brain myelination remains poorly understood. We show dysregulated neuronal RHEB-mTORC1-DLK1 axis impairs brain myelination. Neuronal Rheb cKO impairs oligodendrocyte differentiation/myelination, with activated neuronal expression of the imprinted gene Dlk1. Neuronal Dlk1 cKO ameliorates myelination deficit in neuronal Rheb cKO mice, indicating that activated neuronal Dlk1 expression contributes to impaired myelination caused by Rheb cKO. The effect of Rheb cKO on Dlk1 expression is mediated by mTORC1; neuronal mTor cKO and Raptor cKO and pharmacological inhibition of mTORC1 recapitulate elevated neuronal Dlk1 expression. We demonstrate that both a secreted form of DLK1 and a membrane-bound DLK1 inhibit the differentiation of cultured oligodendrocyte precursor cells into oligodendrocytes expressing myelin proteins. Finally, neuronal expression of Dlk1 in transgenic mice reduces the formation of mature oligodendrocytes and myelination. This study identifies Dlk1 as an inhibitor of oligodendrocyte myelination and a mechanism linking altered neuronal signaling with oligodendrocyte dysfunction.


Assuntos
Bainha de Mielina , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Animais , Camundongos , Diferenciação Celular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo
17.
Brain Behav Immun ; 112: 125-131, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301235

RESUMO

INTRODUCTION: Cardiovascular diseases (CVDs) and major depressive disorder (MDD) are the two most disabling diseases. Patients with CVDs comorbid depression had somatic and fatigue symptoms and were associated with chronic inflammation and omega-3 polyunsaturated fatty acid (n-3 PUFA) deficits. However, there have been limited studies on the effects of n-3 PUFAs on somatic and fatigue symptoms in patients with CVDs comorbid MDD. METHOD: Forty patients with CVDs comorbid MDD (58% males, mean age of 60 ± 9 years) were enrolled and randomised to receive either n-3 PUFAs (2 g of eicosapentaenoic acid [EPA] and 1 g of docosahexaenoic acid[DHA] per day) or placebo in a 12-week double-blind clinical trial. We assessed the somatic symptoms with Neurotoxicity Rating Scale (NRS) and fatigue symptoms with Fatigue Scale at baseline, weeks 1, 2, 4, 8 and 12, as well as blood levels of Brain-Derived Neurotrophic Factor (BDNF), inflammatory biomarkers and PUFAs, at the baseline and week 12. RESULTS: The n-3 PUFAs group had a greater reduction in Fatigue scores than the placebo group at Week 4 (p =.042), while there were no differences in the changes of NRS scores. N-3 PUFAs group also had a greater increase in EPA (p =.001) and a greater decrease in total n-6 PUFAs (p =.030). Moreover, in the subgroup analyses in the younger age group (age < 55), the n-3 PUFAs group had a greater reduction on NRS total scores at Week 12 (p =.012) and NRS Somatic scores at Week 2 (p =.010), Week 8 (p =.027), Week 12 (p =.012) than the placebo group. In addition, the pre- and post-treatment changes of EPA and total n-3 PUFAs levels were negatively associated with the changes of NRS scores at Weeks 2, 4, and 8 (all p <.05), and the changes of BDNF levels were negatively associated with NRS scores at Weeks 8 and 12 (both p <.05) in the younger age group. In the older age group (age ≥ 55), there were a lesser reduction on NRS scores at Weeks 1, 2 and 4 (all p <.05), but a greater reduction on Fatigue score at Week 4 (p =.026), compared to the placebo group. There was no significant correlation between the changes of blood BDNF, inflammation, PUFAs and NRS and Fatigue scores in general and in the older age group. CONCLUSION: Overall, n-3 PUFAs improved the fatigue symptoms in patients with CVDs comorbid MDD and the general somatic symptoms in specific subpopulation of younger age patients, and perhaps via the interplay between BDNF and EPA. Our findings provide promising rationales for future studies to investigate the treatment effects of omega-3 fatty acids on fatigue and somatic symptoms of chronic mental and medical diseases.


Assuntos
Doenças Cardiovasculares , Transtorno Depressivo Maior , Ácidos Graxos Ômega-3 , Sintomas Inexplicáveis , Masculino , Humanos , Idoso , Pessoa de Meia-Idade , Feminino , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo , Doenças Cardiovasculares/complicações , Ácidos Graxos Ômega-3/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Insaturados
18.
Front Pharmacol ; 14: 1154654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234717

RESUMO

CDK4/6 plays a crucial role in various cancers and is an effective anticancer drug target. However, the gap between clinical requirements and approved CDK4/6 drugs is unresolved. Thus, there is an urgent need to develop selective and oral CDK4/6 inhibitors, particularly for monotherapy. Here, we studied the interaction between abemaciclib and human CDK6 using molecular dynamics simulations, binding free energy calculations, and energy decomposition. V101 and H100 formed stable hydrogen bonds with the amine-pyrimidine group, and K43 interacted with the imidazole ring via an unstable hydrogen bond. Meanwhile, I19, V27, A41, and L152 interacted with abemaciclib through π-alkyl interactions. Based on the binding model, abemaciclib was divided into four regions. With one region modification, 43 compounds were designed and evaluated using molecular docking. From each region, three favorable groups were selected and combined with each other to obtain 81 compounds. Among them, C2231-A, which was obtained by removing the methylene group from C2231, showed better inhibition than C2231. Kinase profiling revealed that C2231-A showed inhibitory activity similar to that of abemaciclib; additionally, C2231-A inhibited the growth of MDA-MB-231 cells to a greater extent than did abemaciclib. Based on molecular dynamics simulation, C2231-A was identified as a promising candidate compound with considerable inhibitory effects on human breast cancer cell lines.

19.
Anal Chem ; 95(21): 8267-8276, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191204

RESUMO

Patients with triple-negative breast cancer (TNBC) have dismal prognoses due to the lack of therapeutic targets and susceptibility to lymph node (LN) metastasis. Therefore, it is essential to develop more effective approaches to identify early TNBC tissues and LNs. In this work, a magnetic resonance imaging (MRI) contrast agent (Mn-iCOF) was constructed based on the Mn(II)-chelated ionic covalent organic framework (iCOF). Because of the porous structure and hydrophilicity, the Mn-iCOF has a high longitudinal relaxivity (r1) of 8.02 mM-1 s-1 at 3.0 T. For the tumor-bearing mice, a lower dose (0.02 mmol [Mn]/kg) of Mn-iCOF demonstrated a higher signal-to-noise ratio (SNR) value (1.8) and longer retention time (2 h) compared to a 10-fold dose of commercial Gd-DOTA (0.2 mmol [Gd]/kg). Moreover, the Mn-iCOF can provide continuous and significant MR contrast for the popliteal LNs within 24 h, allowing for accurate evaluation and dissection of LNs. These excellent MRI properties of the Mn-iCOF may open new avenues for designing more biocompatible MRI contrast agents with higher resolutions, particularly in the diagnosis of TNBC.


Assuntos
Estruturas Metalorgânicas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Estruturas Metalorgânicas/química , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...