Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(33): 39351-39362, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552834

RESUMO

Sulfur (S) doping is an effective method for constructing high-performance carbon anodes for sodium-ion batteries. However, traditional designs of S-doped carbon often exhibit low initial Coulombic efficiency (ICE), poor rate capability, and impoverished cycle performance, limiting their practical applications. This study proposes an innovative design strategy to fabricate S-doped carbon using sulfonated sugar molecules as precursors via high-energy ball milling. The results show that the high-energy ball milling can immobilize S for sulfonated sugar molecules by modulating the chemical state of S atoms, thereby creating a S-rich carbon framework with a doping level of 15.5 wt %. In addition, the S atoms are present mainly in the form of C-S bonds, facilitating a stable electrochemical reaction; meanwhile, S atoms expand the spacing between carbon layers and contribute sufficient capacitance-type Na-storage sites. Consequently, the S-doped carbon exhibits a large capacity (>600 mAh g-1), a high ICE (>90%), superior cycling stability (490 mAh g-1 after 1100 cycles at 5 A g-1), and outstanding rate performance (420 mAh g-1 at a high current density of 50 A g-1). Such excellent Na-storage properties of S-doped carbon have rarely been reported in the literatures before.

2.
iScience ; 26(4): 106546, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123247

RESUMO

Genomic researchers increasingly utilize commercial cloud service providers (CSPs) to manage data and analytics needs. CSPs allow researchers to grow Information Technology (IT) infrastructure on demand to overcome bottlenecks when combining large datasets. However, without adequate security controls, the risk of unauthorized access may be higher for data stored on the cloud. Additionally, regulators are mandating data access patterns and specific security protocols for the storage and use of genomic data. While CSP provides tools for security and regulatory compliance, building the necessary controls required for cloud solutions is not trivial. Research Assets Provisioning and Tracking Online Repository (RAPTOR) by the Genome Institute of Singapore is a cloud-native genomics data repository and analytics platform that implements a "five-safes" framework to provide security and governance controls to data contributors and users, leveraging CSP for sharing and analysis of genomic datasets without the risk of security breaches or running afoul of regulations.

3.
J Am Chem Soc ; 145(1): 567-578, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562646

RESUMO

Mimicking filament sliding in sarcomeres using artificial molecular muscles such as [c2]daisy chains has aroused increasing interest in developing advanced polymeric materials. Although few bistable [c2]daisy chain-based mechanically interlocked polymers (MIPs) with stimuli-responsive behaviors have been constructed, it remains a significant challenge to establish the relationship between microscopic responsiveness of [c2]daisy chains and macroscopic mechanical properties of the corresponding MIPs. Herein, we report two mechanically interlocked networks (MINs) consisting of dense [c2]daisy chains with individual extension (MIN-1) or contraction (MIN-2) conformations decoupled from a bistable precursor, which serve as model systems to address the challenge. Upon external force, the extended [c2]daisy chains in MIN-1 mainly undergo elastic deformation, which is able to assure the strength, elasticity, and creep resistance of the corresponding material. For the contracted [c2]daisy chains, long-range sliding motion occurs along with the release of latent alkyl chains between the two DB24C8 wheels, and accumulating lots of such microscopic motions endows MIN-2 with enhanced ductility and ability of energy dissipation. Therefore, by decoupling a bistable [c2]daisy chain into individual extended and contracted ones, we directly correlate the microscopic motion of [c2]daisy chains with macroscopic mechanical properties of MINs.


Assuntos
Polímeros , Conformação Molecular , Movimento (Física)
4.
Behav Sci (Basel) ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36285927

RESUMO

This study explores the psychological factors affecting small tourism firm (STF) owners' decision making about reopening businesses in the midst of COVID-19 based on protection motivation theory and the theory of planned behaviour. The data were collected from a sample of 300 STFs in the Ancient City of Pingyao when the lockdown policy was lifted in China. A symmetric approach, i.e., partial least squares structural equation modelling (PLS-SEM), and an asymmetric model, i.e., a fuzzy set/qualitative comparative analysis (fsQCA), were used to analyse the net effect of the psychological determinants and correlations between the variables leading to high and low behavioural intentions to reopen businesses. The results indicate that social norms and perceived business uncertainty were the critical factors influencing the intention to reopen. The pathway (low perceived risk of infection, low perceived business uncertainty, high reward, high response efficacy, high self-efficacy, high attitude, and high subjective norm) was only one configuration for a high intention to reopen. The study results are discussed based on dual-process theory, and practical implications are offered to guide STF recovery amid COVID-19.

5.
PLoS One ; 10(9): e0137526, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26348928

RESUMO

Genome-wide functional analyses require high-resolution genome assembly and annotation. We applied ChIA-PET to analyze gene regulatory networks, including 3D chromosome interactions, underlying thyroid hormone (TH) signaling in the frog Xenopus tropicalis. As the available versions of Xenopus tropicalis assembly and annotation lacked the resolution required for ChIA-PET we improve the genome assembly version 4.1 and annotations using data derived from the paired end tag (PET) sequencing technologies and approaches (e.g., DNA-PET [gPET], RNA-PET etc.). The large insert (~10 Kb, ~17 Kb) paired end DNA-PET with high throughput NGS sequencing not only significantly improved genome assembly quality, but also strongly reduced genome "fragmentation", reducing total scaffold numbers by ~60%. Next, RNA-PET technology, designed and developed for the detection of full-length transcripts and fusion mRNA in whole transcriptome studies (ENCODE consortia), was applied to capture the 5' and 3' ends of transcripts. These amendments in assembly and annotation were essential prerequisites for the ChIA-PET analysis of TH transcription regulation. Their application revealed complex regulatory configurations of target genes and the structures of the regulatory networks underlying physiological responses. Our work allowed us to improve the quality of Xenopus tropicalis genomic resources, reaching the standard required for ChIA-PET analysis of transcriptional networks. We consider that the workflow proposed offers useful conceptual and methodological guidance and can readily be applied to other non-conventional models that have low-resolution genome data.


Assuntos
Genoma , Hormônios Tireóideos/genética , Transcriptoma/genética , Xenopus/genética , Animais , Cromatina/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Anotação de Sequência Molecular , RNA/genética , RNA Mensageiro/genética , Análise de Sequência de DNA
6.
PLoS One ; 7(9): e46152, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029419

RESUMO

Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10-20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Mutação , Neoplasias/genética , Fases de Leitura Aberta , Análise de Sequência de DNA/métodos , Algoritmos , Linhagem Celular Tumoral , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Biblioteca Genômica , Humanos , Mutagênese Insercional
7.
Genome Res ; 21(8): 1328-38, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21555364

RESUMO

Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50%-60%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.


Assuntos
RNA Mensageiro/genética , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Zigoto/metabolismo , Animais , Sequência de Bases , Genoma , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Análise de Sequência de RNA , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Genome Res ; 21(5): 665-75, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21467267

RESUMO

Somatic genome rearrangements are thought to play important roles in cancer development. We optimized a long-span paired-end-tag (PET) sequencing approach using 10-Kb genomic DNA inserts to study human genome structural variations (SVs). The use of a 10-Kb insert size allows the identification of breakpoints within repetitive or homology-containing regions of a few kilobases in size and results in a higher physical coverage compared with small insert libraries with the same sequencing effort. We have applied this approach to comprehensively characterize the SVs of 15 cancer and two noncancer genomes and used a filtering approach to strongly enrich for somatic SVs in the cancer genomes. Our analyses revealed that most inversions, deletions, and insertions are germ-line SVs, whereas tandem duplications, unpaired inversions, interchromosomal translocations, and complex rearrangements are over-represented among somatic rearrangements in cancer genomes. We demonstrate that the quantitative and connective nature of DNA-PET data is precise in delineating the genealogy of complex rearrangement events, we observe signatures that are compatible with breakage-fusion-bridge cycles, and we discover that large duplications are among the initial rearrangements that trigger genome instability for extensive amplification in epithelial cancers.


Assuntos
Pareamento de Bases/genética , Neoplasias da Mama/genética , Mapeamento Cromossômico/métodos , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Biologia Computacional , DNA/genética , Feminino , Rearranjo Gênico , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...