Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325329

RESUMO

Plant regeneration is an important dimension of plant propagation and a key step in the production of transgenic plants. However, regeneration capacity varies widely among genotypes and species, the molecular basis of which is largely unknown. Association mapping methods such as genome-wide association studies (GWAS) have long demonstrated abilities to help uncover the genetic basis of trait variation in plants; however, the performance of these methods depends on the accuracy and scale of phenotyping. To enable a large-scale GWAS of in planta callus and shoot regeneration in the model tree Populus, we developed a phenomics workflow involving semantic segmentation to quantify regenerating plant tissues over time. We found that the resulting statistics were of highly non-normal distributions, and thus employed transformations or permutations to avoid violating assumptions of linear models used in GWAS. We report over 200 statistically supported quantitative trait loci (QTLs), with genes encompassing or near to top QTLs including regulators of cell adhesion, stress signaling, and hormone signaling pathways, as well as other diverse functions. Our results encourage models of hormonal signaling during plant regeneration to consider keystone roles of stress-related signaling (e.g. involving jasmonates and salicylic acid), in addition to the auxin and cytokinin pathways commonly considered. The putative regulatory genes and biological processes we identified provide new insights into the biological complexity of plant regeneration, and may serve as new reagents for improving regeneration and transformation of recalcitrant genotypes and species.


Assuntos
Estudo de Associação Genômica Ampla , Populus , Populus/genética , Genes de Plantas , Locos de Características Quantitativas , Ácidos Indolacéticos
2.
Plant Direct ; 7(11): e3546, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38028649

RESUMO

The Salicaceae family is of growing interest in the study of dioecy in plants because the sex determination region (SDR) has been shown to be highly dynamic, with differing locations and heterogametic systems between species. Without the ability to transform and regenerate Salix in tissue culture, previous studies investigating the mechanisms regulating sex in the genus Salix have been limited to genome resequencing and differential gene expression, which are mostly descriptive in nature, and functional validation of candidate sex determination genes has not yet been conducted. Here, we used Arabidopsis to functionally characterize a suite of previously identified candidate genes involved in sex determination and sex dimorphism in the bioenergy shrub willow Salix purpurea. Six candidate master regulator genes for sex determination were heterologously expressed in Arabidopsis, followed by floral proteome analysis. In addition, 11 transcription factors with predicted roles in mediating sex dimorphism downstream of the SDR were tested using DAP-Seq in both male and female S. purpurea DNA. The results of this study provide further evidence to support models for the roles of ARR17 and GATA15 as master regulator genes of sex determination in S. purpurea, contributing to a regulatory system that is notably different from that of its sister genus Populus. Evidence was also obtained for the roles of two transcription factors, an AP2/ERF family gene and a homeodomain-like transcription factor, in downstream regulation of sex dimorphism.

3.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526283

RESUMO

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Assuntos
Genes de Plantas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Software , Transcriptoma/genética , Atlas como Assunto
4.
Front Plant Sci ; 14: 1210146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546246

RESUMO

Metabolite genome-wide association studies (mGWASs) are increasingly used to discover the genetic basis of target phenotypes in plants such as Populus trichocarpa, a biofuel feedstock and model woody plant species. Despite their growing importance in plant genetics and metabolomics, few mGWASs are experimentally validated. Here, we present a functional genomics workflow for validating mGWAS-predicted enzyme-substrate relationships. We focus on uridine diphosphate-glycosyltransferases (UGTs), a large family of enzymes that catalyze sugar transfer to a variety of plant secondary metabolites involved in defense, signaling, and lignification. Glycosylation influences physiological roles, localization within cells and tissues, and metabolic fates of these metabolites. UGTs have substantially expanded in P. trichocarpa, presenting a challenge for large-scale characterization. Using a high-throughput assay, we produced substrate acceptance profiles for 40 previously uncharacterized candidate enzymes. Assays confirmed 10 of 13 leaf mGWAS associations, and a focused metabolite screen demonstrated varying levels of substrate specificity among UGTs. A substrate binding model case study of UGT-23 rationalized observed enzyme activities and mGWAS associations, including glycosylation of trichocarpinene to produce trichocarpin, a major higher-order salicylate in P. trichocarpa. We identified UGTs putatively involved in lignan, flavonoid, salicylate, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress response that determine sustainable biomass crop production. Our results provide new support for in silico analyses and evidence-based guidance for in vivo functional characterization.

5.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399189

RESUMO

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilação , Biomassa , Biocombustíveis/análise , Plantas/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo
6.
New Phytol ; 239(6): 2248-2264, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488708

RESUMO

Plant establishment requires the formation and development of an extensive root system with architecture modulated by complex genetic networks. Here, we report the identification of the PtrXB38 gene as an expression quantitative trait loci (eQTL) hotspot, mapped using 390 leaf and 444 xylem Populus trichocarpa transcriptomes. Among predicted targets of this trans-eQTL were genes involved in plant hormone responses and root development. Overexpression of PtrXB38 in Populus led to significant increases in callusing and formation of both stem-born roots and base-born adventitious roots. Omics studies revealed that genes and proteins controlling auxin transport and signaling were involved in PtrXB38-mediated adventitious root formation. Protein-protein interaction assays indicated that PtrXB38 interacts with components of endosomal sorting complexes required for transport machinery, implying that PtrXB38-regulated root development may be mediated by regulating endocytosis pathway. Taken together, this work identified a crucial root development regulator and sheds light on the discovery of other plant developmental regulators through combining eQTL mapping and omics approaches.


Assuntos
Populus , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo
7.
Curr Biol ; 33(15): 3111-3124.e5, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419115

RESUMO

Plant microbiomes are assembled and modified through a complex milieu of biotic and abiotic factors. Despite dynamic and fluctuating contributing variables, specific host metabolites are consistently identified as important mediators of microbial interactions. We combine information from a large-scale metatranscriptomic dataset from natural poplar trees and experimental genetic manipulation assays in seedlings of the model plant Arabidopsis thaliana to converge on a conserved role for transport of the plant metabolite myo-inositol in mediating host-microbe interactions. While microbial catabolism of this compound has been linked to increased host colonization, we identify bacterial phenotypes that occur in both catabolism-dependent and -independent manners, suggesting that myo-inositol may additionally serve as a eukaryotic-derived signaling molecule to modulate microbial activities. Our data suggest host control of this compound and resulting microbial behavior are important mechanisms at play surrounding the host metabolite myo-inositol.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Inositol/metabolismo , Bactérias/genética , Bactérias/metabolismo , Plântula/metabolismo , Fenótipo
8.
Hortic Res ; 10(6): uhad085, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323227

RESUMO

The genus Populus has long been used for environmental, agroforestry and industrial applications worldwide. Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological and ecological research. As such, various modern biotechnologies, including CRISPR/Cas9-based techniques, have been actively applied to Populus for genetic and genomic improvements for traits such as increased growth rate and tailored lignin composition. However, CRISPR/Cas9 has been primarily used as the active Cas9 form to create knockouts in the hybrid poplar clone "717-1B4" (P. tremula x P. alba clone INRA 717-1B4). Alternative CRISPR/Cas9-based technologies, e.g. those involving modified Cas9 for gene activation and base editing, have not been evaluated in most Populus species for their efficacy. Here we employed a deactivated Cas9 (dCas9)-based CRISPR activation (CRISPRa) technique to fine-tune the expression of two target genes, TPX2 and LecRLK-G which play important roles in plant growth and defense response, in hybrid poplar clone "717-1B4" and poplar clone "WV94" (P. deltoides "WV94"), respectively. We observed that CRISPRa resulted in 1.2-fold to 7.0-fold increase in target gene expression through transient expression in protoplasts and Agrobacterium-mediated stable transformation, demonstrating the effectiveness of dCas9-based CRISPRa system in Populus. In addition, we applied Cas9 nickase (nCas9)-based cytosine base editor (CBE) to precisely introduce premature stop codons via C-to-T conversion, with an efficiency of 13%-14%, in the target gene PLATZ which encodes a transcription factor involved in plant fungal pathogen response in hybrid poplar clone "717-1B4". Overall, we showcase the successful application of CRISPR/Cas-based technologies in gene expression regulation and precise gene engineering in two Populus species, facilitating the adoption of emerging genome editing tools in woody species.

9.
Front Plant Sci ; 14: 1089011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351208

RESUMO

Due to its ability to spread quickly and result in tree mortality, Sphaerulina musiva (Septoria) is one of the most severe diseases impacting Populus. Previous studies have identified that Septoria infection induces differential expression of phenylpropanoid biosynthesis genes. However, more extensive characterization of changes to lignin in response to Septoria infection is lacking. To study the changes of lignin due to Septoria infection, four field grown, naturally variant Populus trichocarpa exhibiting visible signs of Septoria infection were sampled at health, infected, and reaction zone regions for cell wall characterization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and acid hydrolysis were applied to identify changes to the cell wall, and especially lignin. FTIR and subsequent principal component analysis revealed that infected and reaction zone regions were similar and could be distinguished from the non-infected (healthy) region. NMR results indicated the general trend that infected region had a higher syringyl:guaiacyl ratio and lower p-hydroxybenzoate content than the healthy regions from the same genotype. Finally, Klason lignin content in the infected and/or reaction zone regions was shown to be higher than healthy region, which is consistent with previous observations of periderm development and metabolite profiling. These results provide insights on the response of Populus wood characteristics to Septoria infection, especially between healthy and infected region within the same genotype.

10.
Nat Commun ; 14(1): 2600, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147307

RESUMO

Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , DNA/metabolismo
11.
Front Plant Sci ; 14: 1153113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215291

RESUMO

Populus is a promising lignocellulosic feedstock for biofuels and bioproducts. However, the cell wall biopolymer lignin is a major barrier in conversion of biomass to biofuels. To investigate the variability and underlying genetic basis of the complex structure of lignin, a population of 409 three-year-old, naturally varying Populus trichocarpa genotypes were characterized by heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR). A subsequent genome-wide association study (GWAS) was conducted using approximately 8.3 million single nucleotide polymorphisms (SNPs), which identified 756 genes that were significantly associated (-log10(p-value)>6) with at least one lignin phenotype. Several promising candidate genes were identified, many of which have not previously been reported to be associated with lignin or cell wall biosynthesis. These results provide a resource for gaining insights into the molecular mechanisms of lignin biosynthesis and new targets for future genetic improvement in poplar.

12.
Cells ; 12(7)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37048154

RESUMO

Mutualistic association can improve a plant's health and productivity. G-type lectin receptor-like kinase (PtLecRLK1) is a susceptibility factor in Populus trichocarpa that permits root colonization by a beneficial fungus, Laccaria bicolor. Engineering PtLecRLK1 also permits L. bicolor root colonization in non-host plants similar to Populus trichocarpa. The intracellular signaling reprogramed by PtLecRLK1 upon recognition of L. bicolor to allow for the development and maintenance of symbiosis is yet to be determined. In this study, phosphoproteomics was utilized to identify phosphorylation-based relevant signaling pathways associated with PtLecRLK1 recognition of L. bicolor in transgenic switchgrass roots. Our finding shows that PtLecRLK1 in transgenic plants modifies the chitin-triggered plant defense and MAPK signaling along with a significant adjustment in phytohormone signaling, ROS balance, endocytosis, cytoskeleton movement, and proteasomal degradation in order to facilitate the establishment and maintenance of L. bicolor colonization. Moreover, protein-protein interaction data implicate a cGMP-dependent protein kinase as a potential substrate of PtLecRLK1.


Assuntos
Micorrizas , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Lectinas/metabolismo , Simbiose/fisiologia , Reguladores de Crescimento de Plantas/metabolismo
13.
Plants (Basel) ; 12(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111880

RESUMO

Although CRISPR/Cas-based genome editing has been widely used for plant genetic engineering, its application in the genetic improvement of trees has been limited, partly because of challenges in Agrobacterium-mediated transformation. As an important model for poplar genomics and biotechnology research, eastern cottonwood (Populus deltoides) clone WV94 can be transformed by A. tumefaciens, but several challenges remain unresolved, including the relatively low transformation efficiency and the relatively high rate of false positives from antibiotic-based selection of transgenic events. Moreover, the efficacy of CRISPR-Cas system has not been explored in P. deltoides yet. Here, we first optimized the protocol for Agrobacterium-mediated stable transformation in P. deltoides WV94 and applied a UV-visible reporter called eYGFPuv in transformation. Our results showed that the transgenic events in the early stage of transformation could be easily recognized and counted in a non-invasive manner to narrow down the number of regenerated shoots for further molecular characterization (at the DNA or mRNA level) using PCR. We found that approximately 8.7% of explants regenerated transgenic shoots with green fluorescence within two months. Next, we examined the efficacy of multiplex CRISPR-based genome editing in the protoplasts derived from P. deltoides WV94 and hybrid poplar clone '52-225' (P. trichocarpa × P. deltoides clone '52-225'). The two constructs expressing the Trex2-Cas9 system resulted in mutation efficiency ranging from 31% to 57% in hybrid poplar clone 52-225, but no editing events were observed in P. deltoides WV94 transient assay. The eYGFPuv-assisted plant transformation and genome editing approach demonstrated in this study has great potential for accelerating the genome editing-based breeding process in poplar and other non-model plants species and point to the need for additional CRISPR work in P. deltoides.

14.
Plant Physiol ; 191(3): 1492-1504, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546733

RESUMO

Deciduous woody plants like poplar (Populus spp.) have seasonal bud dormancy. It has been challenging to simultaneously delay the onset of bud dormancy in the fall and advance bud break in the spring, as bud dormancy, and bud break were thought to be controlled by different genetic factors. Here, we demonstrate that heterologous expression of the REVEILLE1 gene (named AaRVE1) from Agave (Agave americana) not only delays the onset of bud dormancy but also accelerates bud break in poplar in field trials. AaRVE1 heterologous expression increases poplar biomass yield by 166% in the greenhouse. Furthermore, we reveal that heterologous expression of AaRVE1 increases cytokinin contents, represses multiple dormancy-related genes, and up-regulates bud break-related genes, and that AaRVE1 functions as a transcriptional repressor and regulates the activity of the DORMANCY-ASSOCIATED PROTEIN 1 (DRM1) promoter. Our findings demonstrate that AaRVE1 appears to function as a regulator of bud dormancy and bud break, which has important implications for extending the growing season of deciduous trees in frost-free temperate and subtropical regions to increase crop yield.


Assuntos
Agave , Populus , Proteínas de Plantas/metabolismo , Populus/metabolismo , Estações do Ano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
J Plant Physiol ; 277: 153791, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36027837

RESUMO

Crassulacean acid metabolism (CAM) plants exhibit elevated drought and heat tolerance compared to C3 and C4 plants through an inverted pattern of day/night stomatal closure and opening for CO2 assimilation. However, the molecular responses to water-deficit conditions remain unclear in obligate CAM species. In this study, we presented genome-wide transcription sequencing analysis using leaf samples of an obligate CAM species Kalanchoë fedtschenkoi under moderate and severe drought treatments at two-time points of dawn (2-h before the start of light period) and dusk (2-h before the dark period). Differentially expressed genes were identified in response to environmental drought stress and a whole genome wide co-expression network was created as well. We found that the expression of CAM-related genes was not regulated by drought stimuli in K. fedtschenkoi. Our comparative analysis revealed that CAM species (K. fedtschenkoi) and C3 species (Arabidopsis thaliana, Populus deltoides 'WV94') share some common transcriptional changes in genes involved in multiple biological processes in response to drought stress, including ABA signaling and biosynthesis of secondary metabolites.


Assuntos
Metabolismo Ácido das Crassuláceas , Secas , Dióxido de Carbono/metabolismo , Metabolismo Ácido das Crassuláceas/genética , Genômica , Fotossíntese/genética , Plantas/metabolismo , Água/metabolismo
16.
Plant Direct ; 6(8): e419, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35979037

RESUMO

Woody biomass is an important feedstock for biofuel production. Manipulation of wood properties that enable efficient conversion of biomass to biofuel reduces cost of biofuel production. Wood cell wall composition is regulated at several levels that involve expression of transcription factors such as wood-/secondary cell wall-associated NAC domains (WND or SND). In Arabidopsis thaliana, SND1 regulates cell wall composition through activation of its down-stream targets such as MYBs. The functional aspects of SND1 homologs in the woody Populus have been studied through transgenic manipulation. In this study, we investigated the role of PdWND1B, Populus SND1 sequence ortholog, in wood formation using transgenic manipulation through over-expression or silencing under the control of a vascular-specific 4-coumarate-CoA ligase (4CL) promoter. As compared with control plants, PdWND1B-RNAi plants were shorter in height, with significantly reduced stem diameter and dry biomass, whereas there were no significant differences in growth and productivity of PdWND1B over-expression plants. Conversely, PdWND1B over-expression lines showed a significant reduction in cellulose and increase in lignin content, whereas there was no significant impact on lignin content of downregulated lines. Stem carbohydrate composition analysis revealed a decrease in glucose, mannose, arabinose, and galactose, but an increase in xylose in the over-expression lines. Transcriptome analysis revealed upregulation of several downstream transcription factors and secondary cell wall related structural genes in the PdWND1B over-expression lines, partly explaining the observed phenotypic changes in cell wall chemistry. Relative to the control, glucose release efficiency and ethanol production from stem biomass was significantly reduced in over-expression lines. Our results show that PdWND1B is an important factor determining biomass productivity, cell wall chemistry and its conversion to biofuels in Populus.

17.
ACS Synth Biol ; 10(12): 3600-3603, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34878784

RESUMO

CRISPR/Cas has recently emerged as the most reliable system for genome engineering in various species. However, concerns about risks associated with the CRISPR/Cas technology are increasing on potential unintended DNA changes that might accidentally arise from CRISPR gene editing. Developing a system that can detect and report the presence of active CRISPR/Cas tools in biological systems is therefore very necessary. Here, we developed four real-time detection systems that can spontaneously indicate the presence of active CRISPR-Cas tools for genome editing and gene regulation including CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa in plants. Using the fluorescence-based molecular biosensors, we demonstrated that the activities of CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa can be effectively detected in transient expression via protoplast transformation and leaf infiltration (in Arabidopsis, poplar, and tobacco) and stable transformation in Arabidopsis.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta/genética , Plantas/genética
18.
Hortic Res ; 8(1): 234, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719678

RESUMO

Green fluorescent protein (GFP) has been widely used for monitoring gene expression and protein localization in diverse organisms. However, highly sensitive imaging equipment, like fluorescence microscope, is usually required for the visualization of GFP, limitings its application to fixed locations in samples. A reporter that can be visualized in real-time regardless the shape, size and location of the target samples will increase the flexibility and efficiency of research work. Here, we report the application of a GFP-like protein, called eYGFPuv, in both transient expression and stable transformation, in two herbaceous plant species (Arabidopsis and tobacco) and two woody plant species (poplar and citrus). We observed bright fluorescence under UV light in all of the four plant species without any effects on plant growth or development. eYGFPuv was shown to be effective for imaging transient expression in leaf and root tissues. With a focus on in vitro transformation, we demonstrated that the transgenic events expressing 1x eYGFPuv could be easily identified visually during the callus stage and the shoot stage, enabling early and efficient selection of transformants. Furthermore, whole-plant level visualization of eYGFPuv revealed its ubiquitous stability in transgenic plants. In addition, our transformation experiments showed that eYGFPuv can also be used to select transgenic plants without antibiotics. This work demonstrates the feasibility of utilizing 1x eYGFPuv in studies of gene expression and plant transformation in diverse plants.

19.
Front Plant Sci ; 12: 704697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484267

RESUMO

The phenylpropanoid pathway serves as a rich source of metabolites in plants and provides precursors for lignin biosynthesis. Lignin first appeared in tracheophytes and has been hypothesized to have played pivotal roles in land plant colonization. In this review, we summarize recent progress in defining the lignin biosynthetic pathway in lycophytes, monilophytes, gymnosperms, and angiosperms. In particular, we review the key structural genes involved in p-hydroxyphenyl-, guaiacyl-, and syringyl-lignin biosynthesis across plant taxa and consider and integrate new insights on major transcription factors, such as NACs and MYBs. We also review insight regarding a new transcriptional regulator, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, canonically identified as a key enzyme in the shikimate pathway. We use several case studies, including EPSP synthase, to illustrate the evolution processes of gene duplication and neo-functionalization in lignin biosynthesis. This review provides new insights into the genetic engineering of the lignin biosynthetic pathway to overcome biomass recalcitrance in bioenergy crops.

20.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469536

RESUMO

Orphan genes are characteristic genomic features that have no detectable homology to genes in any other species and represent an important attribute of genome evolution as sources of novel genetic functions. Here, we identified 445 genes specific to Populus trichocarpa. Of these, we performed deeper reconstruction of 13 orphan genes to provide evidence of de novo gene evolution. Populus and its sister genera Salix are particularly well suited for the study of orphan gene evolution because of the Salicoid whole-genome duplication event which resulted in highly syntenic sister chromosomal segments across the Salicaceae. We leveraged this genomic feature to reconstruct de novo gene evolution from intergenera, interspecies, and intragenomic perspectives by comparing the syntenic regions within the P. trichocarpa reference, then P. deltoides, and finally Salix purpurea. Furthermore, we demonstrated that 86.5% of the putative orphan genes had evidence of transcription. Additionally, we also utilized the Populus genome-wide association mapping panel, a collection of 1,084 undomesticated P. trichocarpa genotypes to further determine putative regulatory networks of orphan genes using expression quantitative trait loci (eQTL) mapping. Functional enrichment of these eQTL subnetworks identified common biological themes associated with orphan genes such as response to stress and defense response. We also identify a putative cis-element for a de novo gene and leverage conserved synteny to describe evolution of a putative transcription factor binding site. Overall, 45% of orphan genes were captured in trans-eQTL networks.


Assuntos
Populus , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Estudo de Associação Genômica Ampla , Filogenia , Populus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...