Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
ACS Sens ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635911

RESUMO

The highly contagious nature and 100% fatality rate contribute to the ongoing and expanding impact of the African swine fever virus (ASFV), causing significant economic losses worldwide. Herein, we developed a cascaded colorimetric detection using the combination of a CRISPR/Cas14a system, G-quadruplex DNAzyme, and microfluidic paper-based analytical device. This CRISPR/Cas14a-G4 biosensor could detect ASFV as low as 5 copies/µL and differentiate the wild-type and mutated ASFV DNA with 2-nt difference. Moreover, this approach was employed to detect ASFV in porcine plasma. A broad linear detection range was observed, and the limit of detection in spiked porcine plasma was calculated to be as low as 42-85 copies/µL. Our results indicate that the developed paper platform exhibits the advantages of high sensitivity, excellent specificity, and low cost, making it promising for clinical applications in the field of DNA disease detection and suitable for popularization in low-resourced areas.

2.
Mol Phylogenet Evol ; 195: 108055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485106

RESUMO

Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.


Assuntos
Glycine max , Heterópteros , Animais , Glycine max/genética , Filogenia , Variação Genética , Evolução Molecular , DNA Mitocondrial/genética , Filogeografia , Ásia Oriental , Heterópteros/genética
3.
Mol Phylogenet Evol ; 195: 108056, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493987

RESUMO

The yellow spotted stink bug (YSSB), Erthesina fullo (Thunberg, 1783) is an important Asian pest that has recently successfully invaded Europe and an excellent material for research on the initial stage of biological invasion. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of YSSB for the first time based on population genetic methods [using double digest restriction-site associated DNA (ddRAD) data and mitochondrial COI and CYTB] and ecological niche modelling. The results showed that four lineages (east, west, southwest, and Hainan Island) were established in the native range with a strong east-west differentiation phylogeographical structure, and the violent climate fluctuation might cause population divergence during the Middle and Upper Pleistocene. In addition, land bridges and monsoon promote dispersal and directional genetic exchanging between island populations and neighboring continental populations. The east lineage (EA) was identified as the source of invasion in Albania. EA had the widest geographical distribution among all other lineages, with a star-like haplotype network with the main haplotype as the core. It also had a rapid population expansion history, indicating that the source lineage might have stronger diffusion ability and adaptability. Our findings provided a significant biological basis for fine tracking of invasive source at the lineage or population level and promote early invasion warning of potential invasive species on a much subtler lineage level.


Assuntos
Heterópteros , Animais , Filogeografia , Filogenia , Heterópteros/genética , Evolução Biológica , Mitocôndrias/genética , DNA Mitocondrial/genética , Variação Genética
4.
ACS Sens ; 9(3): 1162-1167, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38442486

RESUMO

Nucleic acid analysis plays an important role in disease diagnosis and treatment. The discovery of CRISPR technology has provided novel and versatile approaches to the detection of nucleic acids. However, the most widely used CRISPR-Cas12a detection platforms lack the capability to distinguish single-stranded DNA (ssDNA) from double-stranded DNA (dsDNA). To overcome this limitation, we first employed an anti-CRISPR protein (AcrVA1) to develop a novel CRISPR biosensor to detect ssDNA exclusively. In this sensing strategy, AcrVA1 cut CRISPR guide RNA (crRNA) to inhibit the cleavage activity of the CRISPR-Cas12a system. Only ssDNA has the ability to recruit the cleaved crRNA fragment to recover the detection ability of the CRISPR-Cas12 biosensor, but dsDNA cannot accomplish this. By measuring the recovered cleavage activity of the CRISPR-Cas12a biosensor, our developed AcrVA1-assisted CRISPR biosensor is capable of distinguishing ssDNA from dsDNA, providing a simple and reliable method for the detection of ssDNA. Furthermore, we demonstrated our developed AcrVA1-assisted CRISPR biosensor to monitor the enzymatic activity of helicase and screen its inhibitors.


Assuntos
Técnicas Biossensoriais , RNA Guia de Sistemas CRISPR-Cas , DNA de Cadeia Simples/genética , Sistemas CRISPR-Cas/genética , DNA/genética
5.
Anal Chem ; 96(6): 2676-2683, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290431

RESUMO

Sepsis is an extremely dangerous medical condition that emanates from the body's response to a pre-existing infection. Early detection of sepsis-inducing bacterial infections can greatly enhance the treatment process and potentially prevent the onset of sepsis. However, current point-of-care (POC) sensors are often complex and costly or lack the ideal sensitivity for effective bacterial detection. Therefore, it is crucial to develop rapid and sensitive biosensors for the on-site detection of sepsis-inducing bacteria. Herein, we developed a graphene oxide CRISPR-Cas12a (GO-CRISPR) biosensor for the detection of sepsis-inducing bacteria in human serum. In this strategy, single-stranded (ssDNA) FAM probes were quenched with single-layer graphene oxide (GO). Target-activated Cas12a trans-cleavage was utilized for the degradation of the ssDNA probes, detaching the short ssDNA probes from GO and recovering the fluorescent signals. Under optimal conditions, we employed our GO-CRISPR system for the detection of Salmonella Typhimurium (S. Typhimurium) with a detection sensitivity of as low as 3 × 103 CFU/mL in human serum, as well as a good detection specificity toward other competing bacteria. In addition, the GO-CRISPR biosensor exhibited excellent sensitivity to the detection of S. Typhimurium in spiked human serum. The GO-CRISPR system offers superior rapidity for the detection of sepsis-inducing bacteria and has the potential to enhance the early detection of bacterial infections in resource-limited settings, expediting the response for patients at risk of sepsis.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Grafite , Sepse , Humanos , Sistemas CRISPR-Cas/genética , Sepse/diagnóstico , Bactérias , Corantes , Óxidos
6.
Sci Total Environ ; 912: 168905, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016549

RESUMO

In traditional CRISPR-based biosensors, the cleavage-induced signal generation is insufficient because only a signals is generated at a CRISPR-induced cleavage. Herein, we developed an improved CRISPR/Cas12a-based biosensor with an enlarged signal generation which integrated the hybridization chain reaction (HCR) and low-background Förster Resonance Energy Transfer (FRET) signal output mode. The HCR with nucleic acid self-assembly capability was used as a signal carrier to load more signaling molecules. To get the best signal amplification, three different fluorescence signal output modes (fluorescence recovery, FRET and low-background FRET) generated by two fluoresceins, FAM and Cy5, were fully investigated and compared. The results indicated that the low-background FRET signal output mode with the strictest signal generation conditions yielded the highest signal-to-noise ratio (S/N) (19.17) and the most obvious fluorescence color change (from red to yellow). In optimal conditions, the proposed biosensor was successfully applied for Salmonella Typhimurium (S. Typhimurium) detection with 6 h (including 4 h for sample pre-treatment) from the initial target processing to the final detection result. The qualitative sensitivity, reliant on color changes, was 103 CFU/mL. The quantitative sensitivity, calculated by the fluorescence value, were 1.62 × 101 CFU/mL, 3.72 × 102 CFU/mL, and 8.71 × 102 CFU/mL in buffer solution, S. Typhimurium-spiked milk samples, and S.Typhimurium-spiked chicken samples, respectively. The excellent detection performance of the proposed biosensor endowed its great application potential in food and environment safety monitoring.


Assuntos
Técnicas Biossensoriais , Salmonella typhimurium , Técnicas Biossensoriais/métodos , Hibridização de Ácido Nucleico , Fluoresceínas , Hibridização Genética
7.
ACS Sens ; 8(12): 4478-4483, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38010835

RESUMO

Accurate and sensitive detection of single nucleotide polymorphism (SNP) holds significant clinical implications, especially in the field of cancer diagnosis. Leveraging its high accuracy and programmability, the CRISPR system emerges as a promising platform for advancing the identification of SNPs. In this study, we compared two type V CRISPR/Cas systems (Cas12a and Cas14a) for the identification of cancer-related SNP. Their identification performances were evaluated by characterizing their mismatch tolerance to the BRAF gene. We found that the CRISPR/Cas14a system exhibited superior accuracy and robustness over the CRISPR/Cas12a system for SNP detection. Furthermore, blocker displacement amplification (BDA) was combined with the CRISPR/Cas14a system to eliminate the interference of the wild type (WT) and increase the detection accuracy. In this strategy, we were able to detect BRAF V600E as low as 103 copies with a sensitivity of 0.1% variant allele frequency. Moreover, the BDA-assisted CRISPR/Cas14a system has been applied to identify the BRAF mutation from human colorectal carcinoma cells, achieving a high sensitivity of 0.5% variant allele frequency, which is comparable to or even superior to those of most commercially available products. This work has broadened the scope of the CRISPR system and provided a promising method for precision medicine.


Assuntos
Neoplasias Colorretais , Polimorfismo de Nucleotídeo Único , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Sistemas CRISPR-Cas/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Mutação
8.
Ecol Evol ; 13(11): e10660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915809

RESUMO

The gut bacteria involves in insect homeostasis by playing essential roles in host physiology, metabolism, innate immunity, and so forth. microRNAs (miRNAs) are endogenous small noncoding RNAs that posttranscriptionally regulate gene expression to affect immune or metabolic processes in insects. For several non-model insects, the available knowledge on the relationship between changes in the gut bacteria and miRNA profiles is limited. In this study, we investigated the gut bacterial diversity, composition, and function from Altica viridicyanea feeding on normal- and antibiotic-treated host plants using 16S rRNA amplicon sequencing; antibiotics have been shown to affect the body weight and development time in A. viridicyanea, suggesting that the gut bacteria of the normal sample were more diverse and abundant than those of the antibiotic-fed group, and most of them were involved in various physical functions by enrichment analysis. Furthermore, we executed small RNA transcriptome sequencing using the two experimental groups to obtain numerous sRNAs, such as piRNAs, siRNAs, and known and novel miRNAs, by data mapping and quality control, and furthermore, a total of 224 miRNAs were identified as significantly differentially expressed miRNAs, of which some DEMs and their target genes participated in immune- and metabolism-related pathways based on GO and KEGG annotation. Besides, regarding the regulatory roles of miRNA and target genes, a interaction network of DEM-target gene pairs from eight immune- or metabolism-related signaling pathways were constructed. Finally, we discovered that DEMs from above pathways were significantly positively or negatively correlated with gut bacterial alterations following antibiotic treatment. Collectively, the observations of this study expand our understanding of how the disturbance of gut bacteria affects miRNA profiles in A. viridicyanea and provide new valuable resources from extreme ranges for future studies on the adaptive evolution in insects.

9.
Trends Analyt Chem ; 1682023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840598

RESUMO

Infectious diseases (such as sepsis, influenza, and malaria), caused by various pathogenic bacteria and viruses, are widespread across the world. Early and rapid detection of disease-related pathogens is necessary to reduce their spread in the world and prevent their potential global pandemics. The clustered regularly interspaced short palindromic repeats (CRISPR) technology, as the next-generation molecular diagnosis technique, holds immense promise in the detection of infectious diseases because of its remarkable advantages, including supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have been developed for application in environmental monitoring, food safety, and point-of-care diagnosis, there remains a critical need to summarize and explore their potential in human health. This review aims to address this gap by focusing on the latest advancements in CRISPR-based biosensors for infectious disease detection. We provide an overview of the current status, pre-amplification methods, the unique feature of each CRISPR system, and the design of CRISPR-based biosensing strategies to detect disease-associated nucleic acids. Last but not least, the review analyzes the current challenges and provides future perspectives, which will contribute to developing more effective CRISPR-based biosensors for human health.

10.
Front Physiol ; 14: 1244190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664435

RESUMO

Long noncoding RNAs (lncRNAs) play significant roles in the regulation of mRNA expression or in shaping the competing endogenous RNA (ceRNA) network by targeting miRNA. The insect gut is one of the most important tissues due to direct contact with external pathogens and functions in the immune defense against pathogen infection through the innate immune system and symbionts, but there are limited observations on the role of the lncRNA-involved ceRNA network of the Toll/Imd pathway and correlation analysis between this network and bacterial microbiota in the Altica viridicyanea gut. In this research, we constructed and sequenced six RNA sequencing libraries using normal and antibiotic-reared samples, generating a total of 17,193 lncRNAs and 26,361 mRNAs from massive clean data by quality control and bioinformatic analysis. Furthermore, a set of 8,539 differentially expressed lncRNAs (DELs) and 13,263 differentially expressed mRNAs (DEMs), of which related to various immune signaling pathways, such as the Toll/Imd, JAK/STAT, NF-κB, and PI3K-Akt signaling pathways, were obtained between the two experimental groups in A. viridicyanea. In addition, numerous GO and KEGG enrichment analyses were used to annotate the DELs and their target genes. Moreover, six Toll family members and nineteen signal genes from the Toll/Imd signaling pathway were identified and characterized using online tools, and phylogenetic analyses of the above genes proved their classification. Next, a lncRNA-miRNA-mRNA network of the Toll/Imd pathway was built, and it contained different numbers of DEMs in this pathway and related DELs based on prediction and annotation. In addition, qRT-PCR validation and sequencing data were conducted to show the expression patterns of the above DELs and DEMs related to the Toll/Imd signaling pathway. Finally, the correlated investigations between DELs or DEMs of the Toll/Imd signaling pathway and most changes in the gut bacterial microbiota revealed significantly positive or negative relationships between them. The present findings provide essential evidence for innate immune ceRNAs in the beetle gut and uncover new potential relationships between innate immune pathways and the gut bacterial microbiota in insects.

11.
mBio ; 14(5): e0135623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732773

RESUMO

IMPORTANCE: Mitochondrial pyruvate carrier (MPC) is a pyruvate transporter that plays a crucial role in regulating the carbon metabolic flow and is considered an essential mechanism for microorganisms to adapt to environmental changes. However, it remains unclear how MPC responds to environmental stress in organisms. General control non-derepressible 4 (GCN4), a key regulator of nitrogen metabolism, plays a pivotal role in the growth and development of fungi. In this study, we report that GCN4 can directly bind to the promoter region and activate the expression of GlMPC, thereby regulating the tricarboxylic acid cycle and secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. These findings provide significant insights into the regulation of carbon and nitrogen metabolism in fungi, highlighting the critical role of GCN4 in coordinating metabolic adaptation to environmental stresses.


Assuntos
Reishi , Reishi/genética , Reishi/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolismo Secundário , Nitrogênio/metabolismo , Carbono/metabolismo
12.
Lab Chip ; 23(19): 4173-4200, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37675935

RESUMO

Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.


Assuntos
Bioensaio , Vírus da Dengue , Humanos , Tecnologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-37688974

RESUMO

Insects possess complex and dynamic gut microbial system, which contributes to host nutrient absorption, reproduction, energy metabolism, and protection against stress. However, there are limited data on interactions of host-gut bacterial microbiota through miRNA (microRNA) regulation in a significant pest, Riptortus pedestris. Here, we performed the 16S rRNA amplicon sequencing and small RNA sequencing from the R. pedestris gut under three environmental conditions and antibiotic treatment, suggesting that we obtained a large amount of reads by assembly, filtration and quality control. The 16S rRNA amplicon sequencing results showed that the abundance and diversity of gut bacterial microbiota were significantly changed between antibiotic treatment and other groups, and they are involved in metabolism and biosynthesis-related function based on functional prediction. Furthermore, we identified different numbers of differentially expressed unigenes (DEGs) and differentially expressed miRNAs (DEMs) based on high-quality mappable reads, which were enriched in various immune-related pathways, including Toll-like receptor, RIG-I-like receptor, NOD-like receptor, JAK/STAT, PI3K/Akt, NF-κB, MAPK signaling pathways, and so forth, using GO and KEGG enrichment analysis. Later on, the identified miRNAs and their target genes in the R. pedestris gut were predicted and randomly selected to construct an interaction network. Finally, our study indicated that alterations in the gut bacterial microbiota are significantly positively or negatively associated with DEMs of the Toll/Imd signaling pathway with Pearson correlation analysis. Taken together, the results of our study lay the foundation for further deeply understanding the interactions between the gut microbiota and immune responses in R. pedestris through miRNA regulation, and provide the new basis for pest management in hemipteran pests.


Assuntos
Microbioma Gastrointestinal , Heterópteros , MicroRNAs , Animais , RNA Ribossômico 16S/genética , Fosfatidilinositol 3-Quinases , Heterópteros/genética , Heterópteros/microbiologia , Antibacterianos , MicroRNAs/genética
14.
ACS Appl Mater Interfaces ; 15(31): 37184-37192, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489943

RESUMO

The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 µg/mL with a limit of detection (LOD) of 0.037 µg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , COVID-19/diagnóstico , Colorimetria , Ouro , SARS-CoV-2 , Saccharomyces cerevisiae , Glicoproteína da Espícula de Coronavírus , Peroxidase do Rábano Silvestre
15.
ACS Appl Mater Interfaces ; 15(23): 27732-27741, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261449

RESUMO

The transport, distribution, and mixing of microfluidics often require additional instruments, such as pumps and valves, which are not feasible when operated in point-of-care (POC) settings. Here, we present a simple microfluidic pathogen detection system known as Rotation-Chip that transfers the reagents between wells by manually rotating two concentric layers without using external instruments. The Rotation-Chip is fabricated by a simple computer numerical control (CNC) machining process and is capable of carrying out 60 multiplexed reactions with a simple 30 or 60° rotation. Leveraging superhydrophobic coating, a high fluid transport efficiency of 92.78% is achieved without observable leaking. Integrated with an intracellular fluorescence assay, an on-chip detection limit of 1.8 × 106 CFU/mL is achieved for ampicillin-resistant Escherichia coli (E. coli), which is similar to our off-chip results. We also develop a computer vision method to automatically distinguish positive and negative samples on the chip, showing 100% accuracy. Our Rotation-Chip is simple, low-cost, high-throughput, and can display test results with a single chip image, making it ideal for various multiplexing POC applications in resource-limited settings.


Assuntos
Escherichia coli , Sistemas Automatizados de Assistência Junto ao Leito , Rotação , Computadores , Interações Hidrofóbicas e Hidrofílicas , Dispositivos Lab-On-A-Chip
16.
Insects ; 14(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37233061

RESUMO

The short stay at the beginning of the invasion process is a critical time for invasive species identification and preventing invasive species from developing a wider distribution and significant economic impact. The stalk-eyed seed bug Chauliops fallax is an important agricultural pest of soybean and was first reported to occur outside East Asia. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of C. fallax for the first time based on population genetic methods and ecological niche modelling. The results showed that four native East Asian genetic groups (EA, WE, TL, and XZ) were well supported, showing an east-west differentiation pattern consistent with the geographical characteristics of three-step landforms in China. Two main haplotypes existed: Hap1 might have experienced a rapid northwards expansion process after the LGM period, and Hap5 reflected local adaptation to the environment in southeastern China. The Kashmir sample was found to come from the recent invasion of populations in the coastal areas of southern China. Ecological niche modelling results suggested that North America has a high risk of invasion, which might pose a serious threat to local soybean production. In addition, with future global warming, the suitable habitat in Asia will move towards the higher latitude region and gradually deviate from the soybean planting area, which indicates the threat of C. fallax to soybean production in Asia will decrease in the future. The results could provide new insights into the monitoring and management of this agricultural pest in the early invasion stage.

17.
J Agric Food Chem ; 71(22): 8665-8672, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227100

RESUMO

Human noroviruses pose grave threats to public health and economy. In this study, we genetically engineered yeast (Saccharomyces cerevisiae EBY100) to display specific norovirus-binding nanobodies (Nano-26 and Nano-85) on cell surface to facilitate the concentration of noroviruses for improved detection. Binding of norovirus virus-like particles (VLPs) to these nanobody-displaying yeasts was confirmed and characterized using confocal microscopy and flow cytometry. The ability of our engineered yeasts to capture norovirus VLPs can reach up to 91.3%. Furthermore, this approach was applied to concentrate and detect norovirus VLPs in a real food matrix. A wide linear detection range (1-104 pg/g) was observed, and the detection limit on spiked spinach was calculated as low as 0.071 pg/g. Overall, our engineered yeasts could be a promising approach to concentrate and purify noroviruses in food samples for easy detection, which allows us to prevent the spread of food-borne virus in the food supply chain.


Assuntos
Norovirus , Anticorpos de Domínio Único , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Norovirus/genética
18.
ISME Commun ; 3(1): 46, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142716

RESUMO

Prokaryotic antiviral systems are important mediators for prokaryote-phage interactions, which have significant implications for the survival of prokaryotic community. However, the prokaryotic antiviral systems under environmental stress are poorly understood, limiting the understanding of microbial adaptability. Here, we systematically investigated the profile of the prokaryotic antiviral systems at the community level and prokaryote-phage interactions in the drinking water microbiome. Chlorine disinfectant was revealed as the main ecological driver for the difference in prokaryotic antiviral systems and prokaryote-phage interactions. Specifically, the prokaryotic antiviral systems in the microbiome exhibited a higher abundance, broader antiviral spectrum, and lower metabolic burden under disinfectant stress. Moreover, significant positive correlations were observed between phage lysogenicity and enrichment of antiviral systems (e.g., Type IIG and IV restriction-modification (RM) systems, and Type II CRISPR-Cas system) in the presence of disinfection, indicating these antiviral systems might be more compatible with lysogenic phages and prophages. Accordingly, there was a stronger prokaryote-phage symbiosis in disinfected microbiome, and the symbiotic phages carried more auxiliary metabolic genes (AMGs) related to prokaryotic adaptability as well as antiviral systems, which might further enhance prokaryote survival in drinking water distribution systems. Overall, this study demonstrates that the prokaryotic antiviral systems had a close association with their symbiotic phages, which provides novel insights into prokaryote-phage interactions and microbial environmental adaptation.

19.
J Econ Entomol ; 116(3): 761-770, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37094809

RESUMO

The redbanded stink bug, Piezodorus guildinii (Westwood, 1837), is a highly destructive soybean pest native to the Neotropical Region. In the past 60 yr, P. guildinii has been observed to expand its distribution in North and South America, causing significant soybean yield losses. In order to predict the future distribution direction of P. guildinii and create an effective pest control strategy, we projected the potential global distribution of P. guildinii using 2 different emission scenarios, Shared Socioeconomic Pathways 126 and 585, and 3 Earth system models, with the maximum entropy niche model (MaxEnt). Then, the predicted distribution areas of P. guildinii were jointly analyzed with the main soybean-producing areas to assess the impact for different soybean region. Our results showed that temperature is the main environmental factor limiting the distribution of P. guildinii. Under present climate conditions, all continents except Antarctica have suitable habitat for P. guildinii. These suitable habitats overlap with approximately 45.11% of the total global cultivated soybean areas. Moreover, P. guildinii was predicted to expand its range in the future, particularly into higher latitudes in the Northern hemisphere. Countries, in particular the United States, where soybean is widely available, would face a management challenge under global warming. In addition, China and India are also high-risk countries that may be invaded and should take strict quarantine measures. The maps of projected distribution produced in this study may prove useful in the future management of P. guildinii and the containment of its disruptive effects.


Assuntos
Hemípteros , Heterópteros , Animais , Glycine max , Mudança Climática , China , Índia
20.
Front Physiol ; 14: 1102216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935745

RESUMO

Introduction: The genus Trissolcus includes a number of egg parasitoids that are known to contribute to the control of Halyomorpha halys. The number of progenies, particularly females, is important for the efficient mass rearing of species used in augmentative biological control programs. Cold storage is an important technique for extending the shelf life of natural enemies used in such programs. Methods: We assessed how fecundity, sex ratio, lifespan, and the number of hosts parasitized within 24 h were affected by host density for T. japonicus and T. cultratus when offered fresh H. halys eggs and how these parameters were affected if adult parasitoids were first placed in cold storage (11°C in the dark) for 19 weeks before being used for propagation. Results: The fecundity were 110.2 and 84.2 offspring emerged at 25°C, for parasitoids not placed in cold storage; among the offspring that emerged, 82.6% and 85.6% were female for T. japonicus and T. cultratus, respectively. If first placed in cold storage, T. japonicus and T. cultratus produced 35.1 and 24.6 offspring per female, respectively, although cold storage significantly extended the shelf life. The survival rates of parasitoids that were placed in cold storage were 90.3% and 81.3% for females, and 3.2% and 0.9% for males of T. japonicus and T. cultratus, respectively. The number of hosts parasitized within 24 h was not shown to be density dependent, but it was significantly lower after cold storage. Discussion: This information can be used to estimate the likely production for augmented rearing colonies for use in biological control programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...